Рубрика «cnn» - 4

IBM адаптировала сверточную нейронную сеть для работы на нейроморфном чипе - 1

Как утверждает IBM, точность TrueNorth соответствует лучшим современным системам распознавания изображений и голоса, но при этом система потребляет меньше энергии и работает быстрее. Команда исследователей компании уверена, что объединение сверточных сетей с нейроморфными микросхемами позволит в дальнейшем создавать более совершенные умные автомобили и смартфоны, которые правильно распознают голосовую команду человека, даже если он будет говорить с набитым ртом. Попробуем разобраться, в чем достоинства и недостатки TrueNorth, и где он нашел применение. Читать полностью »

13 марта 2017 года «Известия» отметили 100-летний юбилей и запустили новый сайт газеты. 2 июня издание перешло на короткий домен iz.ru, отказалось от мартовского декора и добавило на главную страницу живое видео (видео с короткими новостями и тревожной музыкой a la «Звёздный десант» запускается на iz.ru автоматически). Принадлежащие «Национальной медиа группе» (НМГ) «Известия» Читать полностью »

image

Сегодня болезнь Альцгеймера — одно из самых коварных заболеваний, её возникновение очень сложно (и дорого) предугадать. И хотя уже развившуюся болезнь остановить нельзя, есть свидетельства того, что выявление на ранней стадии помогает замедлить или остановить болезнь Альцгеймера и деградацию мозга. Поэтому поиск надежного способа определить подверженность риску развития заболевания занимает умы исследователей.

По мере старения человеческого организма когнитивные нарушения неизбежны. С возрастом люди становятся более забывчивыми, чаще теряют ход мыслей и затрудняются принимать решения или выполнять задачи, которые раньше не вызывали трудностей. Врачи называют это мягким когнитивным нарушением. Оно затрагивает большинство людей, когда они становятся старше.

У многих людей с легкими когнитивными нарушениями развивается более тяжелая форма — болезнь Альцгеймера. Человек теряет словарный запас, часто использует неправильные замены слов, перестает признавать близких родственников, теряет базовые навыки самостоятельного ухода за собой и в конечном итоге становится полностью зависим от других людей, которые помогают ему. Большая часть людей с таким диагнозом умирает в течение нескольких лет после обнаружения болезни Альцгеймера.

Интересно то, что такой сценарий ждет не всех людей с легкими когнитивными расстройствами. Со временем состояние пациента может не ухудшаться, а в некоторых случаях даже улучшаться. Поэтому врачи хотят найти способы выявить тех, у кого с большей вероятностью разовьется болезнь Альцгеймера.

Южнокорейские ученые предложили использовать для этой цели глубинное обучение. Технология, которую они разработали, может точно определить людей, у которых болезнь Альцгеймера может развиться в ближайшие три года.Читать полностью »

Второе почетное. Заметки участника конкурса Dstl Satellite Imagery Feature Detection - 1

Недавно закончилось соревнование по машинному обучению Dstl Satellite Imagery Feature Detection в котором приняло участие аж трое сотрудников Avito. Я хочу поделиться опытом участия от своего лица и рассказать о решении.
Читать полностью »

Создаём нейронную сеть InceptionV3 для распознавания изображений - 1

Привет! Под катом пойдёт речь о реализации свёрточной нейронной сети архитектуры InceptionV3 с использованием фреймворка Keras. Статью я решил написать после ознакомления с туториалом "Построение мощных моделей классификации с использованием небольшого количества данных". С одобрения автора туториала я немного изменил содержание своей статьи. В отличие от предложенной автором нейронной сети VGG16, мы будем обучать гугловскую глубокую нейронную сеть Inception V3, которая уже предустановлена в Keras.

Вы научитесь:

  1. Импортировать нейронную сеть Inception V3 из библиотеки Keras;
  2. Настраивать сеть: загружать веса, изменять верхнюю часть модели (fc-layers), таким образом, приспосабливая модель под бинарную классификацию;
  3. Проводить тонкую настройку нижнего свёрточного слоя нейронной сети;
  4. Применять аугментацию данных при помощи ImageDataGenerator;
  5. Обучать сеть по частям для экономии ресурсов и времени;
  6. Оценивать работу модели.

При написании статьи я ставил перед собой задачу представить максимально практичный материал, который раскроет некоторые интересные возможности фреймворка Keras.
Читать полностью »

Привет

В статье я хочу познакомить читателя с задачей идентификации: пройтись от основных определений до реализации одной из недавних статей в данной области. Итогом должно стать приложение, способное искать одинаковых людей на фотографиях и, что самое главное, понимание того, как оно работает.
Читать полностью »

Представляем вам завершающую статью из цикла по Deep Learning, в которой отражены итоги работы по обучению ГСНС для изображений из определенных областей на примере распознавания и тегирования элементов одежды. Предыдущие части вы найдете под катом.

Deep Learning: Cочетание глубокой сверточной нейронной сети с рекуррентной нейронной сетью - 1
Читать полностью »

Попробуем решить задачу поиска аномалий в звуке.

Примеры аномалий звука:

  • Неисправности в работе двигателя.
  • Изменения в погоде: дождь, град, ветер.
  • Аномалии работа сердца, желудка, суставов.
  • Необычный трафик на дороге.
  • Неисправности колесных пар у поезда.
  • Неисправности при посадке и взлете самолета.
  • Аномалии движения жидкости в трубе, в канале.
  • Аномалии движения воздуха в системах кондиционирования, на крыле самолета.
  • Неисправности автомобиля, велосипеда.
  • Неисправности станка, оборудования.
  • Расстроенный музыкальный инструмент.
  • Неправильно взятые ноты песни.
  • Эхолокация кораблей и подводных лодок.
    Читать полностью »

В предыдущей статье из цикла «Deep Learning» вы узнали о сравнении фреймворков для символьного глубокого обучения. В этом материале речь пойдет о глубокой настройке сверточных нейронных сетей для повышения средней точности и эффективности классификации медицинских изображений.

Deep Learning: Transfer learning и тонкая настройка глубоких сверточных нейронных сетей - 1
Читать полностью »

image

В данной статье я хотел бы рассмотреть на практике вариант построения простейшей рекомендательной системы основанной на схожести изображений товаров. Этот материал предназначен для тех, кто хотел бы попробовать применить Deep Learning, а именно свёрточные нейронные сети, в простом, интересном и практически применимом проекте, но не знает с чего начать.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js