Рубрика «caffe» - 2

Аппаратный ускоритель нейросети подключается по USB - 1

Американская компания Movidius известна как разработчик аппаратного ускорителя нейросетей Myriad 2 VPU и поставщик микросхем для системы искусственного интеллекта GoogleNet.

После оптимизации и подготовки бинарника в фирменном фреймворке Fathom Deep Learning Software Framework нейросеть эффективно работает на ускорителе Myriad 2 с энергопотреблением менее 1 Вт. Такие микросхемы идеально подходят для роботов, мультикоптеров, смартфонов, видеокамер наблюдения, шлемов дополненной реальности — любых гаджетов, где пригодится распознавание объектов, распознавание речи, трекинг объектов, навигация и т.д.

Одновременно с фреймворком Fathom компания Movidius сегодня на саммите Embedded Vision Summit в Калифорнии впервые показала публике ускоритель-на-флешке Fathom Neural Compute Stick — первый в мире прибор такого рода. Здесь вообще всё сразу готово к применению. Флэшка со встроенным ускорителем Myriad 2 просто вставляется в любое устройство с USB-портом.
Читать полностью »

Недавно ZlodeiBaal опубликовал статью «Нейрореволюция в головах и сёлах», в которой привел обзор возможностей современных нейронных сетей. Самым интересным, на мой взгляд, является подход с использованием сверточных сетей для сегментации изображений, про этот подход и пойдет речь в статье.

segnet.png

Уже давно появилось желание изучить сверточные сети и узнать что-то новое, к тому же под рукой есть несколько последних Tesla K40 с 12Гб памяти, Tesla c2050, обычные видеокарты, Jetson TK1 и ноутбук с мобильной GT525M, интереснее всего конечно попробовать на TK1, так как его можно использовать практически везде, хоть на столб фонарный повесить. Самое первое с чего начал, это распознавание цифр, тут конечно удивить нечем, цифры уже давно неплохо распознаются сетями, но при этом постоянно возникает потребность в новых приложениях, которые должны что-то распознавать: номера домов, номера автомобилей, номера вагонов и т.д. Все бы хорошо, но задача распознавания цифр является лишь частью более общих задач.
Читать полностью »

Недавно я ехал на автобусе из Торонто в Нью-Йорк, снаружи автобуса было темно, внутри меня было немного хорошего алкоголя, спать совершенно не хотелось, и я решил поразбираться с Deep Learning. Скачал Caffe, скормил ему пару картинкок, на которых правильно распознались мяч и банан. Захотелось распознать что-то более интересное, и я вспомнил, что где-то на жёстком диске у меня есть дамп хабрахабра, который я делал, когда проходил курс информационного поиска в ШАДе Яндекса.

На написание скрипта, который распознаёт, что изображено на аватарке хабропользователя и грепает всех кошачьих, ушло несколько минут, на обновление дампа до актуального и распознавание картинок ушло несколько дней, и теперь я могу утверждать, что на хабрахабре по меньшей мере 748 котов.

Под хаброкатом можно прочитать чуть больше подробностей и посмотреть на всех котов.

Сколько котов на хабре? - 1

Читать полностью »

Кручинин Дмитрий, Долотов Евгений, Кустикова Валентина, Дружков Павел, Корняков Кирилл

Введение

В настоящее время машинное обучение является активно развивающейся областью научных исследований. Это связано как с возможностью быстрее, выше, сильнее, проще и дешевле собирать и обрабатывать данные, так и с развитием методов выявления из этих данных законов, по которым протекают физические, биологические, экономические и другие процессы. В некоторых задачах, когда такой закон определить достаточно сложно, используют глубокое обучение.

Глубокое обучение (deep learning) рассматривает методы моделирования высокоуровневых абстракций в данных с помощью множества последовательных нелинейных трансформаций, которые, как правило, представляются в виде искусственных нейронных сетей. На сегодняшний день нейросети успешно используются для решения таких задач, как прогнозирование, распознавание образов, сжатие данных и ряда других.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js