Вместо введения
Решил опустить статью про то, как происходит составление базы данных по губам, которую начал в предыдущей исследовательской работе. Замечу, что выбор базы данных для сбора информации и ее администрирование осуществляется индивидуально в зависимости от целей и задач, которые стоят перед Вами, а также имеющихся возможностей и Ваших личных навыков. Давайте теперь перейдем к непосредственной апробации разработанного алгоритма на примере текущих систем распознавания речи на базе открытого исходного кода. Сначала проведем анализ речевых движков, которые имеют свободную лицензию.
Цели:
Определить наиболее оптимальную аудио-систему распознавания речи (речевой движок) на базе открытого исходного кода (Open Source), которую можно интегрировать в разрабатываемую систему видео-определения движения губ пользователя.
Задачи:
Определить аудио-системы распознавания речи, которые попадают под понятие общественного достояния. Рассмотреть наиболее известные варианта речевых систем преобразования голоса в текст, для перспектив интеграции видео-модуля в наиболее оптимальную голосовую библиотеку. Сделать выводы целесообразности использования аудио-систем распознавания речи на базе открытого исходного кода под наши цели и задачи.
Введение
Согласно лингвистическим особенностям человеческой речи, дополнительные артикуляционные данные позволяют более точно выявить речь диктора и автоматически разбить звуковую волну на отдельные фрагменты. Также, при общем анализе аудиовизуального голосового сигнала во временной динамике имеется перспектива фиксирования открытых и закрытых слогов, звонких, шипящих, ударных, безударных гласных/согласных и другие речевые единицы. Именно поэтому в задаче высококачественного распознавания речи крайне важно создание библиотеки данных, которые бы могла бы учитывать эти показатели совместно. Данное направление может быть реализовано в том случае, если имеется открытый доступ к языковым единицам. Именно поэтому для решения нашей задачи (реализация видеорасширения для увеличения точности программ распознавания речи) крайне важно рассмотреть аудио-системы распознавания речи с открытым исходным кодом.
Типы лицензий
Большинство современных продуктов имеют два самых распространенных типа лицензий:
• Проприетарный (собственнический) тип, когда продукт является частной собственностью авторов и правообладателей и не удовлетворяющий критериям свободного ПО (наличия открытого программного кода недостаточно). Правообладатель проприетарного ПО сохраняет за собой монополию на его использование, копирование и модификацию, полностью или в существенных моментах. Обычно полуприетарным называют любое несвободное ПО, включая полусвободное.
• Открытое программное обеспечение (open-source software) — программное обеспечение с открытым исходным кодом. Исходный код таких программ доступен для просмотра, изучения и изменения, что позволяет пользователю принять участие в доработке самой открытой программы, использовать код для создания новых программ и исправления в них ошибок — через заимствование исходного кода, если это позволяет совместимость лицензий, или через изучение использованных алгоритмов, структур данных, технологий, методик и интерфейсов (поскольку исходный код может существенно дополнять документацию, а при отсутствии таковой сам служит документацией).
Среди рассматриваемых систем распознавания речи с открытым исходным кодом нам встретились 2 вида сублицензий BSD и GPL. Рассмотрим их более подробно
Читать полностью »