Рубрика «Блог компании Яндекс» - 49

2 июня в московском офисе Яндекса пройдет очередная Droid Party. В этот раз своим опытом поделится Ханнес Дорфман. Многим из вас он известен как разработчик фреймворка Mosby для Android. Ханннес много времени уделяет исследованию подходов к Андроид-архитектуре.

В преддверии мероприятия мы попросили Ханнеса ответить на вопросы, которые собрали от разработчиков внутри Яндекса. Интервью получилось большим и интересным. Обсудили будущее языков программирования, получили много прикладных советов и даже вспомнили уже легендарные модели Nokia. Читайте подробнее под катом.

Большое интервью с Ханнесом Дорфманом, создателем фреймворка Mosby для Android - 1

Для тех, кто не сможет попасть на Droid Party, мы по традиции организуем трансляцию, которую можно будет посмотреть здесь. Там же можно зарегистрироваться на мероприятие. А те, кто живет в Питере, смогут поучаствовать в телемосте в нашем питерском офисе.

Как обычно, вы можете задавать в комментариях свои вопросы — мы передадим их Ханнесу, и он ответит на них на Droid Party.
Читать полностью »

Сотрудники Яндекса будут представлять Россию в комитете по стандартизации C++ - 1

Хочу поделиться с вами радостной новостью: теперь мы можем влиять на развитие C++! Под «мы» я имею в виду всех российских программистов, работающих с C++.

Но обо всем по порядку.
Читать полностью »

Как вам известно, вчера завершился очередной чемпионат ACM ICPC. Поздравляем студентов МФТИ, ИТМО, УрФУ и ННГУ с отличным выступлением, ребят из СПбГУ — с 1-м местом. Теперь мы приглашаем всех желающих принять участие в Яндекс.Алгоритме 2016. В этом году финал чемпионата пройдет в Минске.

image

В этом году впервые помимо традиционных призов победители получат возможность попасть на стажировку в Яндекс. 22 мая регистрация закроется и останется только следить за другими участниками в отборочных раундах. Квалификационный раунд продлится в этом году двое суток — с 21 по 22 мая. Раунды вновь будут оцениваться по системе TCM/Time. Для тех, кому интересно, какой сложности задачи их ждут, мы разобрали тур прошлогодней квалификации. Также у вас есть возможность потренироваться на нем.
Читать полностью »

12 мая мы с товарищами зашли в московское метро с его открытием утром и, не выбираясь наверх, посетили все 199 доступных в данный момент станций до закрытия метрополитена. Зачем мы всё это сделали – совершенно не ясно, но я попробую рассказать, как так получилось.

Давным-давно, кажется, с год назад жена сказала мне, что хотела бы как-нибудь сфотографировать все станции метро в Москве. Я тогда пошутил, что под такое дело можно рассчитать оптимальный маршрут, позволяющий посетить все станции, напрягаясь по-минимуму. Пошутил и забыл, а тут зимой вспомнил и решил попробовать.

Алгоритм Метромарафона. Как аналитик Яндекса просчитал, что все станции можно посетить за один день - 1

По мере изучения вопроса я обнаружил, что идея сама по себе не то чтобы очень нова – в нью-йоркской подземке аналогичные соревнования проходят с 1966 года. Что же касается московского метро, то ЖЖ-пользователь estrella-de-sur полгода назад проехал его за 12 часов 36 минут (расчётное время – 11 часов 50 минут) по правилу «один шаг на каждую станцию». Но у нас была другая задача – мы хотели выйти на каждой станции и по возможности красиво её сфотографировать. Это означало, что нам в большинстве случаев придётся ждать на ней следующего поезда. Исходя из этого я и строил расчёт.

Предупреждение: если вы умеете решать задачу коммивояжёра на 200 узлах (с помощью генетических алгоритмов или без них) – вас, скорее всего, ждут в другом месте. Можете просто пролистать пост и посмотреть картинки.

Читать полностью »

Какие алгоритмы используют социальные сети, чтобы осуществлять поиск по графу друзей? Как телекомпании выбирают, какую рекламу показывать, чтобы максимизировать прибыль? Как собрать геном из миллионов фрагментов? Как вычислить кратчайший путь из Нью-Йорка в Маунтин Вью в тысячи раз быстрее, чем это делают классические алгоритмы?

На Coursera появилась еще одна полезная специализация, созданная при участии Яндекса, — «Алгоритмы и структуры данных». Среди преподавателей не только представители Яндекса, Вышки, петербургского Computer Science Center, но и лекторы Калифорнийского университета в Сан-Диего, поэтому на этот раз все курсы специализации англоязычные.

Специализация по алгоритмам и структурам данных от Яндекса, Вышки, UC San Diego и CSC - 1

Всего их пять, в конце слушателей ждет финальный проект. Один из них связан с биоинформатикой, второй — с поиском кратчайших путей в настоящих дорожных сетях и графах. В формате специализации все материалы доступны бесплатно. Оплата понадобится только в том случае, если вы захотите отправлять домашние задания на проверку и получить сертификат. Тогда вам нужно будет запрограммировать и сдать около 100 задач в тестирующую систему. Сделать это можно на C, C++, C#, Haskell, Java, JavaScript, Python2, Python3, Ruby и Scala.

Сегодня начинается первый курс — Algorithmic Toolbox. Под катом — программа специализации, информация о преподавателях и их мнение о том, кому она будет полезна и почему.
Читать полностью »

Числа Муаммара. Как я измерял искусственный интеллект на стажировке в Яндексе - 1Лето 2015 года. Сессия успешно сдана. Нормальный человек, наверное, скажет: «Ура! Свобода! Целый день буду играть в футбол и слетаю на море в Турцию». Но только не настоящий исследователь с пытливым умом. Я решил, что в любом случае буду работать над каким-нибудь собственным проектом… Но время непродуктивно со свистом неслось вперед. И тут мне в голову пришла светлая мысль: а почему бы не пойти на стажировку в Яндекс? Наверняка у них есть куча интересных исследовательских задач, к тому же это бесценный опыт работы в огромной компании с множеством профессионалов в своих областях, у которых есть чему поучиться. Тем, как попасть на стажировку в Яндекс, чем там можно заниматься и что вас ждет потом, я и хочу сегодня поделиться.

Для начала пару слов о себе. Зовут меня Муаммар, 21 год от роду, на данный момент являюсь студентом пятого курса мехмата МГУ. А еще я выпускник ШАДа, ведущий семинаров по Natural Language Processing в ШАДе и младший разработчик в команде речевых технологий Яндекса. Какой-то супергениальностью не отличаюсь, но люблю и умею работать. Пожалуй, хватит себя расхваливать, поговорим о стажировке. Кому интересно — добро пожаловать под кат!
Читать полностью »

image

23 апреля 2016 на Я.Субботнике для дизайнеров мы анонсировали наш собственный шрифт Yandex Sans. Мы работали над ним два с половиной года и очень счастливы наконец поделиться результатом. В этом посте я расскажу о том, зачем мы всё это задумали, как происходила работа, что получилось в результате и что будет дальше. Пост написан по мотивам нашего рассказа на Субботнике.
Читать полностью »

Последние полгода всем знакомый интерфейс поисковой выдачи Яндекса (Search Engine Result Page — SERP) переезжает на новую архитектуру, с которой разработка неспецифичных фич становится очень быстрой, а разработка специфичных фич — прогнозируемой. Для большой распределенной команды из 40 фронтендеров это большой успех. Когда все было почти готово и новый код начали обкатывать в production экспериментах, оказалось, что серверная JS-шаблонизация в новой архитектуре ощутимо замедлилась.

Профилирование JS-кода из функций. Опыт Яндекса - 1

Новый код был проще и логичнее скомпонован, поэтому замедление было не только нежелательным, но и неожиданным. Чтобы получить «зеленый свет» для новой архитектуры, нужно было ускорить код, чтобы он работал как минимум не медленнее старого.

Простым «разглядыванием» проблему решить не удалось, нужно было разбираться, нужно было профилировать. Читайте дальше, чтобы узнать, как это было сделано.

Читать полностью »

Важнейшая экспертиза Яндекса — машинное обучение. Она выросла из потребностей поиска, для ранжирования в котором нами была разработана известная сейчас многим технология Матрикснет. В 2014 году Яндекс стал использовать свои знания в области ML вне собственных сервисов — появилась Yandex Data Factory. Это международное направление, которое решает сложные математические задачи для других компаний.

Один из его проектов — прогноз оттока игроков World of Tanks. Илья Трофимов рассказал слушателям Малого ШАДа не только о проекте с Wargaming, но и о том, что вообще такое машинное обучение и в каких задачах оно может помогать бизнесу. Слушатели — старшеклассники, интересующиеся математикой и компьютерными науками.

Сам Илья в 2007 году окончил физический факультет МГУ по специализации «теоретическая физика». В 2011 — Школу анализа данных по специальности «анализ данных». В Яндексе занимался применением машинного обучения для оптимизации показов рекламы, сейчас решает задачи по анализу больших объёмов данных в Yandex Data Factory. Читает лекции в ШАДе по теме «Машинное обучение на больших данных».

Читать полностью »

Когда речь заходит о защите веб-трафика от перехвата и подмены, то на ум в первую очередь приходят протокол HTTPS или даже собственный VPN-сервер. К сожалению, многие забывают еще об одной незащищенной стороне, а именно о DNS-запросах. Сегодня я еще раз привлеку внимание к этой проблеме и расскажу о том, как мы решаем ее в Яндекс.Браузере с помощью технологии DNSCrypt.

Решаем проблему перехвата и подмены DNS-запросов. DNSCrypt в Яндекс.Браузере - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js