Как машинное обучение внедряется на промышленных предприятиях, кто в этом достиг наибольших успехов и какие примеры использования уже есть, мы узнали у Романа Чеботарёва. Роман — архитектор ML и директор по внедрению в компании «Цифра». Он 11 лет занимается внедрением умных технологий класса Machine Learning и Artificial Intelligence. Последние несколько лет Роман специализируется на ML/AI в промышленности.
Расскажите о своем профессиональном пути
Свой профессиональный путь я начал с машинного обучения (хотя тогда такой термин еще массово не использовался) для задач компьютерного зрения. Я разрабатывал различные модули для систем видеоаналитики: детекторы скоплений людей, детекторы дыма, счетчики объектов. Тогда еще они планировались как охранные системы будущего поколения — сейчас они используются повсеместно.
Потихоньку от анализа изображений я перешел в анализ данных вообще. Я уже работал в компании «КРОК», куда пришел разработчиком, а уходил руководителем практики машинного обучения. Большую часть опыта я получил именно там и в основном мы решали задачи, связанные с прогнозированием различных количественных величин в будущем. Больше задач было в ритейле — машинное обучение тогда было наиболее востребовано у заказчиков именно в этой сфере. Мы решали задачи прогнозирования спроса для оптимизации логистики. Таких задач было достаточно много в разных сферах: от фуд-ритейла до автомобильных заправок.
Потом серьезный интерес к машинному обучению начал формироваться со стороны промышленных предприятий. В какой-то момент я с партнерами решил организовать собственный стартап — Theta Data Solution. Мы сделали 6 проектов и больше 10 пилотов за год для промышленных предприятий, а потом нашу компанию приобрела компания «Цифра», где я сейчас работаю директором по внедрению в департаменте AI. По сравнению с первоначальной командой стартапа мы сильно расширились: сейчас в нашем AI-tribe (как мы себя называем) больше 30 человек. Читать полностью »