Рубрика «Блог компании Школа Данных»

Машинное обучение vs. аналитический подход - 1

Какое-то время назад мы нашли свои старые материалы, по которым обучали первые потоки на наших курсах машинного обучения в Школе Данных и сравнили их с теперешними. Мы удивились, сколько всего мы добавили и поменяли за 5 лет обучения. Осознав, почему мы это сделали и как, на самом деле, поменялся подход к решению задач Data Science, мы решили написать вот эту публикацию.Читать полностью »

Машины становятся умнее. Уже сейчас они генерируют контент такого качества, что даже профессионал не всегда отличает его от «человеческого». О том, почему журналистам и редакторам не стоит опасаться конкуренции, и о перспективах автоматизации журналистики на нашей конференции «Контентинга» рассказал Сергей Марин из «Студии данных».

Роботы в журналистике, или Как использовать искусственный интеллект для создания контента - 1

Под катом расшифровка его доклада.
Читать полностью »

Распознавание рентгеновских снимков: precision=0.84, recall=0.96. А нужны ли нам еще врачи? - 1

В последнее время все чаще обсуждается применение AI в медицине. И, конечно, область медицины, которая прямо напрашивается для такого применения это областей диагностики.

Кажется, и раньше можно было применять экспертные системы и алгоритмы классификации к задачам постановки диагноза. Однако, есть одна область AI, которая добилась наибольших успехов в последние годы, а именно область распознавания изображений и сверточные нейронные сети. На некоторых тестах алгоритмы AI в распознавании картинок превзошли человека. Вот два примера: Large Scale Visual Recognition Challenge и German Traffic Sign Recognition Benchmark.

Соответственно, возникла идея применить AI к области распознавания изображений там, где и врачи занимаются распознаванием изображений, а именно к анализу снимков и, для начала, рентгеновских снимков.Читать полностью »

Роботизация может вести к диктатуре - 1

Предыдущая статья на тему замены человека роботом получила большое количество комментариев. Получается, тема живая не только в наших головах.

Поскольку мы сами вносим вклад в роботизацию как в контексте обучения в нашей Школе, так и в контексте проектов, которые мы делаем, то невольно нам приходится задумываться на предмет того, куда в пределе этот процесс может вести и как избежать сопутствующих ему угроз.

В этой публикации мы решили отчасти ответить на комментарии из предыдущей статьи, отчасти немного дальше развить тему. Если кто-то не читал изначальную публикацию — предлагаем это сделать, а также комментарии к ней.

Итак, давайте временно не будем спорить о том, случится так, что роботы смогут заменить человека или нет. Не случится — ок. Но, вот если случится, то дальнейшее нам видится так:Читать полностью »

Что делать с людьми, которых заменят роботы? - 1

В этой предновогодней публикации мы решили немного порассуждать о будущем в мире роботов и о роли человека в нем.

Предсказывать будущее в наши дни стало абсолютным must have среди экспертов. Когда технологии меняют мир настолько стремительно, очень хочется заглянуть хотя бы на несколько лет вперед. Цели разные. Потребителям — пофантазировать, восхититься и/или ужаснуться, бизнесам — скорректировать планы, политикам — продумать меры по сохранению спокойствия в социуме на случай «большого технологического шухера».Читать полностью »

image

Что мешает успешно совместить математику и бизнес?

Этот текст — первая из серии статей о том, как корректно встроить инструменты big data с выгодой для бизнеса.

Маленький спойлер: все получится, если помнить о самом бизнесе.

Еще 5 лет назад крупные компании хотели внедрить у себя новомодную “бигдату”. Но настоящих экспериментаторов было мало. Исключениями стали те, кто точно обладал массой данных: телеком, банковский сектор, интернет-компании. А в 2018 году за экспертизой в больших данных бизнесы приходят сами, причем из самых неожиданных отраслей: металлургия, страхование, авиаиндустрия.Читать полностью »

image

Привет! Надеемся, этим летом не смотря на плохую погоду Вам удалось отдохнуть. Близится осень — самое время поучиться. С учетом предыдущих курсов — мы сильно обновили нашу программу — добавили множество практических занятий, больше говорим про практические кейсы. В этом посте хотелось бы подробно рассказать про все нововведения. Для тех, у кого мало времени:

  • Снизилась цена
  • 8 дополнительных практических семинаров
  • Дополнительные занятия про бизнес
  • Занятия по Deep Learning
  • Доступно удаленное обучение
  • Плюс 2 занятия в Вводном курсе

Читать полностью »

image

Привет!

В последнее время все чаще приходится наблюдать, что ожидания работодателей и потенциальных ученых по данными сильно отличаются. Компания, инвестируя в новые разработки в первую очередь ждет возврат на инвестиции, а не очередную модель. Специалист же, окончивший всевозможные курсы ждет на вход чистые и понятные данные, а на выходе хотел бы отдать модель прикрепив к ней метрики качества. А дальше «пусть менеджеры разбираются», как это все будет встроено в процесс и как именно полученная модель будет использоваться. В результате возникает пропасть и непонимание между бизнесом и учеными.

По факту оказывается, что модели сами по себе никому не нужны, а на деле приходится заниматься очень большим количеством рутинных задач.

Хотелось бы на обобщенных примерах (все совпадения с реальной жизнью случайны) показать, какие же на самом деле трудности приходится преодолевать, чтобы принести работодателю деньги. Наверное, после этого в аналитику данных люди будут идти более осознанно, попутно получая нужные для работы навыки, а не изучая очередную статью про алгоритм.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js