Наверное, в этом тексте для многих не будет новизны. Наверное, другие скажут что такого не бывает в реальной жизни. Но, уже не первое апреля, а всё написанное тут — чистая правда, которая случалась со мной или с людьми вокруг. Возможно что-то из сказанного заставит вас переосмыслить окружающие вас феномены.
Если подходить к этим историям формально, то можно сказать что все они порождены тем что люди не учитывают ошибку второго рода. У Юдковского, с коим знакома четверть Хабра — эта ошибка обычно зовётся «Подтверждающее искажение»
Что это такое? В двух словах — «человек ищет подтверждение своей модели, а не её опровержение». Единственный шанс объяснить лучше, это примеры-примеры-примеры и опыт. Лишь так можно развить чувство что «что-то тут не так».
Мне кажется, что этот короткий рассказ позволят вам посмотреть на ошибки второго рода с совсем другой стороны. Со стороны того, как они уже вошли в нашу жизни, влияют на практически каждое решение. И помогают нам делать богов из окружающих технологий. В машинном обучении я наталкиваюсь на это каждый день.
Читать полностью »
Рубрика «Блог компании Recognitor» - 2
Краткий гайд по созданию оракулов, богов из машины и ошибкам второго рода
2019-04-02 в 12:39, admin, рубрики: Алгоритмы, Блог компании Recognitor, бог из машины, машинное обучение, обработка изображений, ошибки второго рода, распознавание изображенийПравда и ложь систем распознавания лиц
2018-07-29 в 22:02, admin, рубрики: data mining, face recognition, mtccnn, NIST, Ntech, visionlabs, Vocord, Алгоритмы, биометрия, Блог компании Recognitor, лица, машинное обучение, обработка изображений, распознавание лицПожалуй нет ни одной другой технологии сегодня, вокруг которой было бы столько мифов, лжи и некомпетентности. Врут журналисты, рассказывающие о технологии, врут политики которые говорят о успешном внедрении, врут большинство продавцов технологий. Каждый месяц я вижу последствия того как люди пробуют внедрить распознавание лиц в системы которые не смогут с ним работать.
Тема этой статьи давным-давно наболела, но было всё как-то лень её писать. Много текста, который я уже раз двадцать повторял разным людям. Но, прочитав очередную пачку треша всё же решил что пора. Буду давать ссылку на эту статью.
Итак. В статье я отвечу на несколько простых вопросов:
- Можно ли распознать вас на улице? И насколько автоматически/достоверно?
- Позавчера писали, что в Московском метро задерживают преступников, а вчера писали что в Лондоне не могут. А ещё в Китае распознают всех-всех на улице. А тут говорят, что 28 конгрессменов США преступники. Или вот, поймали вора.
- Кто сейчас выпускает решения распознавания по лицам в чём разница решений, особенности технологий?
Большая часть ответов будет доказательной, с сылкой на исследования где показаны ключевые параметры алгоритмов + с математикой расчёта. Малая часть будет базироваться на опыте внедрения и эксплуатации различных биометрических систем.
Я не буду вдаваться в подробности того как сейчас реализовано распознавание лиц. На Хабре есть много хороших статей на эту тему: а, б, с (их сильно больше, конечно, это всплывающие в памяти). Но всё же некоторые моменты, которые влияют на разные решения — я буду описывать. Так что прочтение хотя бы одной из статей выше — упростит понимание этой статьи. Начнём!
Читать полностью »
Человек машине помощник
2018-06-03 в 19:05, admin, рубрики: data mining, deeplearning, machine learning, ocr, Блог компании Recognitor, Компьютерное зрение, машинное обучение, распознавание текстаЭтот блог обычно посвящен распознаванию автомобильных номеров. Но, работая над этой задачей, мы пришли к интересному решению, которое можно с легкостью применять для очень широкого круга задач компьютерного зрения. Об этом сейчас и расскажем: как делать систему распознавания, которая вас не подведет. А если подведет, то ей можно подсказать, где ошибка, переобучить и иметь уже чуть более надежное решение, чем прежде. Добро пожаловать под кат!
Не сверточные сети
2017-12-25 в 16:31, admin, рубрики: Блог компании Recognitor, искусственные нейронные сети, искусственный интеллект, машинное обучение
Достоинства, проблемы и ограничения сверточных нейронных сетей (CNN) в настоящее время достаточно неплохо изучены. Прошло уже около 5 лет после признания их сообществом инженеров и первое впечатление «вот теперь решим все задачи», хочется верить, уже прошло. А значит, пришло время искать идеи, которые позволят сделать следующий шаг в области ИИ. Хинтон, например, предложил CapsuleNet.
Вместе с Алексеем Редозубовым, опираясь на его идеи об устройстве мозга, мы тоже решили отступить от мейнстрима. И сейчас у меня есть что показать: архитектуру (идёт заглавной картинкой для привлечения внимания) и исходники на Tensorflow для MNIST.
Более формально, результат описан в статье на arxiv.
Читать полностью »
Капсульные сети от Хинтона
2017-12-03 в 23:15, admin, рубрики: архитектура нейронной сети, Блог компании Recognitor, Капсульные сети, машинное обучение, обработка изображений, Хинтон
27 октября 2017 года появилась статья доктора Джофри Хинтона с соавторами из Google Brain. Хинтон — более чем известный ученый в области машинного обучения. Он в свое время разработал математику обратного распространения ошибок, был научным руководителем Яна Лекуна — автора архитектуры сверточных сетей.
Хоть презентация была достаточно скромная, корректно говорить о революционном изменении подхода к искусственным нейронным сетям (ИНС). Назвали новый подход «капсульные сети». Пока в российском сегменте интернета мало информации о них, поэтому восполню этот пробел.
Читать полностью »
Можно ли запихнуть распознавание номеров в любой тамагочи?
2017-12-01 в 2:50, admin, рубрики: автономера, Алгоритмы, Блог компании Recognitor, контроль скорости, машинное обучение, обработка изображений, обучение, распознавание номеров, свёрточные сети, шлагбаумыПро распознавание номеров мы рассказываем на Хабре давным давно. Надеюсь даже интересно. Похоже настало время рассказать как это применяется, зачем это вообще нужно, куда это можно запихнуть. А самое главное — как это изменяется в последние годы с приходом новых алгоритмов машинного зрения.
Читать полностью »
Нейронные сети в детектировании номеров
2017-05-28 в 22:56, admin, рубрики: jetson tx1, Nvidia, автомобильные номера, Алгоритмы, Блог компании Recognitor, машинное обучение, нейронные сети, обработка изображений, сверточные нейронные сети, метки: jetson tx1, автомобильные номера, свёрточные нейронные сети
Распознавание автомобильных номеров до сих пор является самым продаваемым решением на основе компьютерного зрения. Сотни, если не тысячи продуктов конкурируют на этом рынке уже на протяжении 20-25 лет. Отчасти поэтому сверточные нейронные сети (CNN) не бьют прежние алгоритмические подходы на рынке.
Но опыт последних лет говорит, что алгоритмы CNN позволяют делать надежные и гибкие для применения решения. Есть и еще одно удобство: при таком подходе всегда можно улучшить надежность решения на порядок после реального внедрения за счет переобучения.
Кроме того, такие алгоритмы отлично реализуются на GPU (графических модулях), которые значительно эффективней с точки зрения потребления электроэнергии, чем обычные процессоры. А платформа Jetson TX так просто потребляет очень мало по меркам современных вычислителей. Наглядное “энергетическое превосходство”:
Читать полностью »
Почему супер-мега-про машинного обучения за 15 минут всё же не стать
2016-10-18 в 16:08, admin, рубрики: detectnet, Nvidia, opencv, rectangle detector, Алгоритмы, Блог компании Recognitor, машинное обучение, обработка изображенийВчера я опубликовал статью про машинное обучение и NVIDIA DIGITS. Как и обещал, сегодняшняя статья — почему всё не так уж и хорошо + пример выделения объектов в кадре на DIGITS.
NVIDIA подняла волну пиара по поводу разработанной и имплиментированной в DIGITS сетки DetectNet. Сетка позиционируется как решение для поиска одинаковых/похожих объектов на изображении.
Совсем не нейронные сети
2016-05-22 в 19:39, admin, рубрики: Блог компании Recognitor, машинное обучение, нейронные сети, обработка изображений, распознавание автомобильных номеров, распознавание изображений, сверточные нейронные сети
Недавно ZlodeiBaal писал о достижениях в сверточных нейронных сетях (CNN) (и, кстати, тут же успешно настроил и обучил сеть для поиска области автомобильного номера).
А я хочу рассказать про принципиально иную и, наверное, более сложную модель, которую сейчас развивает Алексей Редозубов (
AlexeyR), и про то, как мы, конечно проигнорировав некоторые важные элементы, и ее применили для распознавания автомобильных регистрационных знаков!
В статье несколько упрощенно напомню о некоторых моментах этой концепции и покажу, как оно сработало в нашей задаче.
Читать полностью »
Использование сверточных сетей для поиска, выделения и классификации
2016-02-23 в 19:24, admin, рубрики: caffe, Блог компании Recognitor, машинное обучение, обработка изображений, распознавание автомобильных номеров, распознавание номеров, распознавание номеров вагонов, свёрточные сети, сегментация изображений, сегментация легких на флюрографии, метки: Caffe, сверточные сети, сегментация изображенийНедавно ZlodeiBaal опубликовал статью «Нейрореволюция в головах и сёлах», в которой привел обзор возможностей современных нейронных сетей. Самым интересным, на мой взгляд, является подход с использованием сверточных сетей для сегментации изображений, про этот подход и пойдет речь в статье.
Уже давно появилось желание изучить сверточные сети и узнать что-то новое, к тому же под рукой есть несколько последних Tesla K40 с 12Гб памяти, Tesla c2050, обычные видеокарты, Jetson TK1 и ноутбук с мобильной GT525M, интереснее всего конечно попробовать на TK1, так как его можно использовать практически везде, хоть на столб фонарный повесить. Самое первое с чего начал, это распознавание цифр, тут конечно удивить нечем, цифры уже давно неплохо распознаются сетями, но при этом постоянно возникает потребность в новых приложениях, которые должны что-то распознавать: номера домов, номера автомобилей, номера вагонов и т.д. Все бы хорошо, но задача распознавания цифр является лишь частью более общих задач.
Читать полностью »