Рубрика «Блог компании Open Data Science» - 9

Когда мы слышим о сверточных нейронных сетях (CNN), мы обычно думаем о компьютерном зрении. CNN лежали в основе прорывов в классификации изображений — знаменитый AlexNet, победитель соревнования ImageNet в 2012 году, с которого начался бум интереса к этой теме. С тех пор сверточные сети достигли большого успеха в распознавании изображений, в силу того факта, что они устроены наподобие зрительной коры головного мозга — то есть умеют концентрироваться на небольшой области и выделять в ней важные особенности. Но, как оказалось, CNN хороши не только для этого, но и для задач NLP. Более того, в недавно вышедшей статье [1] от коллектива авторов из Intel и Carnegie-Mellon University, утверждается, что они подходят для этого даже лучше RNN, которые безраздельно властвовали областью на протяжении последних лет.

Сверточные нейронные сети

Для начала немного теории. Что такое свертка? Мы не будем на этом останавливаться подробно, так как про это написана уже тонна материалов, но все-таки кратко пробежаться стоит. Есть красивая визуализация от Стэнфорда, которая позволяет ухватить суть:

image
Источник
Читать полностью »

Рубрика «Читаем статьи за вас». Февраль — Март 2018 - 1

Привет! Продолжаем публиковать рецензии на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество!

Читать полностью »

Рубрика «Читаем статьи за вас». Декабрь 2017 — Январь 2018 - 1

Привет! Продолжаем публиковать рецензии на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество!

Читать полностью »

image

Всем привет!

В данной статье хочу поделиться с вами историей о том, как одна и та же архитектура модели принесла сразу две победы в соревновательном машинном обучении на платформе topcoder с интервалом месяц.

Речь пойдёт о следующих соревнованиях:

  • Urban 3d mapper — поиск домиков на спутниковых снимках. Соревнование длилось 2 месяца, было 54 участников и пять призовых мест.
  • Spacenet: road detection challenge — поиск графа дорог. На решение также давалось 2 месяца, включало 33 участника и пять призовых позиций.

В статье рассказывается об общих подходах к решению таких задач и особенностях реализации для конкретных конкурсов.

Для комфортного чтения статьи желательно обладать базовыми знаниями о свёрточных нейронных сетях и их обучении.

Читать полностью »

Интересный факт: в 1912 году итальянский статистик и демограф Коррадо Джини написал знаменитый труд «Вариативность и изменчивость признака», и в этом же году «Титаник» затонул в водах Атлантики. Казалось бы, что общего между этими двумя событиями? Всё просто, их последствия нашли широкое применение в области машинного обучения. И если датасет «Титаник» в представлении не нуждается, то об одной замечательной статистике, впервые опубликованной в труде итальянского учёного, мы поговорим поподробней. Сразу хочу заметить, что статья не имеет никакого отношения к коэффициенту Джини (Gini Impurity), который используется в деревьях решений как критерий качества разбиения в задачах классификации. Эти коэффициенты никак не связаны друг с другом и общего между ними примерно столько же, сколько общего между трактором в Брянской области и газонокосилкой в Оклахоме.

Коэффициент Джини (Gini coefficient) — метрика качества, которая часто используется при оценке предсказательных моделей в задачах бинарной классификации в условиях сильной несбалансированности классов целевой переменной. Именно она широко применяется в задачах банковского кредитования, страхования и целевом маркетинге. Для полного понимания этой метрики нам для начала необходимо окунуться в экономику и разобраться, для чего она используется там.
Читать полностью »

Сверточная сеть на python. Часть 3. Применение модели - 1

Это заключительная часть статей о сверточных сетях. Перед прочтением рекомендую ознакомиться с первой и второй частями, в которых рассматриваются слои сети и принципы их работы, а также формулы, которые отвечают за обучение всей модели. Сегодня мы рассмотрим особенности и трудности, с которыми можно столкнуться при тестировании вручную написанной на python сверточной сети, применим написанную сеть к датасету MNIST и сравним полученные результаты с библиотекой tensorflow.
Читать полностью »

Недавно OpenDataScience и Mail.Ru Group провели открытый курс машинного обучения. В прошлом анонсе много сказано о курсе. В этой статье мы поделимся материалами курса, а также объявим новый запуск.

Материалы открытого курса OpenDataScience и Mail.Ru Group по машинному обучению и новый запуск - 1

Кому не терпится: новый запуск курса — 5 февраля, регистрация не нужна, но чтоб мы вас запомнили и отдельно пригласили, заполните форму. Курс состоит из серии статей на Хабре (Первичный анализ данных с Pandas — первая из них), дополняющих их лекций на YouTube-канале, воспроизводимых материалов (Jupyter notebooks в github-репозитории курса), домашних заданий, соревнований Kaggle Inclass, тьюториалов и индивидуальных проектов по анализу данных. Главные новости будут в группе ВКонтакте, а жизнь во время курса будет теплиться в Slack OpenDataScience (вступить) в канале #mlcourse_open.

Читать полностью »

Сверточная сеть на python. Часть 2. Вывод формул для обучения модели - 1

В прошлой статье мы рассмотрели концептуально все слои и функции, из которых будет состоять будущая модель. Сегодня мы выведем формулы, которые будут отвечать за обучение этой модели. Слои будем разбирать в обратном порядке — начиная с функции потерь и заканчивая сверточным слоем. Если возникнут трудности с пониманием формул, рекомендую ознакомиться с подробным объяснением (на картинках) метода обратного распространения ошибки, и также вспомнить о правиле дифференцирования сложной функции.
Читать полностью »

Рубрика «Читаем статьи за вас». Октябрь — Ноябрь 2017 - 1

Привет! По традиции, представляем вашему вниманию дюжину рецензий на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество ODS!

Статьи выбираются либо из личного интереса, либо из-за близости к проходящим сейчас соревнованиям. Напоминаем, что описания статей даются без изменений и именно в том виде, в котором авторы запостили их в канал #article_essence. Если вы хотите предложить свою статью или у вас есть какие-то пожелания — просто напишите в комментариях и мы постараемся всё учесть в дальнейшем.

Статьи на сегодня:

Читать полностью »

Cоревнование по определению костного возраста. Заметки участника

6-го октября на радары Володи Игловикова попал очень интересный конкурс, организованный американскими рентгенологами из The Radiological Society of North America (RSNA) и Radiology Informatics Committee (RIC), и он бросил клич в сообществе ODS.ai

Pediatric Bone Age Challenge. Deep Learning и много, много костей - 1

Целью конкурса было создание автоматической системы для определения костного возраста по рентгеновским снимкам руки. Костный возраст используется в педиатрии для комплексной оценки физического развития детей, и его отклонение от хронологического помогает выявить нарушения в работе различных систем организма. Когда дело касается медицинских проектов, меня уговаривать не надо, но это соревнование стартовало в августе и вступать в него за 8 дней до окончания выглядело авантюрой. Чтобы хотя бы начать препроцессинг снимков, требовались маски рук, и Володя сделал их за несколько дней, отличного качества, и поделился с остальными. Как он так быстро справился с этой тяжёлой задачей, включавшей ручную разметку – загадка, и об этом он, возможно, напишет сам. С масками затея уже не выглядела безнадёжной, я решился участвовать и в конечном счёте успел реализовать почти все планы.

Задача

Pediatric Bone Age Challenge. Deep Learning и много, много костей - 2Костный возраст (bone age) — это условный возраст, которому соответствует уровень развития костей детей и подростков. Формирование скелета происходит в несколько стадий. Это используется в педиатрии для сравнения костного возраста с хронологическим, что позволяет вовремя заметить нарушения в работе эндокринной системы и системы обмена веществ.

Для определения костного возраста в основном используются две методики — GP Грейлиха и Пайла (Greulich and Pyle) и TW2 Таннера, Уайтхауза и Хили (Tanner, Whitehouse, Healy), разработанные во второй половине XX века. Обе методики основаны на рентгенограмме кисти и лучезапястного сустава. Благодаря большому количеству участков растущей ткани в костях и ядер окостенения, Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js