Рубрика «Блог компании Open Data Science» - 5

Не так давно я столкнулся с задачей по переходу на новую BI-систему для нашей компании. Поскольку мне пришлось погрузиться довольно глубоко и основательно в данный вопрос, я решил поделиться с уважаемым сообществом своими мыслями на этот счет.

image
На просторах интернета есть немало статей на эту тему, но, к моему большому удивлению, они не ответили на многие мои вопросы по выбору нужного инструмента и были несколько поверхностны. В рамках 3 недель тестирования мы опробовали 4 инструмента: Tableau, Looker, Periscope/Sisense, Mode analytics. Про эти инструменты в основном и пойдет речь в данной статье. Сразу оговорюсь, что предложенная статья — это личное мнение автора, отражающее потребности небольшой, но очень быстро растущей IT-компании :)

Несколько слов о рынке

Сейчас на рынке BI происходят довольно интересные изменения, идёт консолидация, крупные игроки облачных технологий пытаются укрепить свои позиции путем вертикальной интеграции всех аспектов работы с данными (хранение данных, обработка, визуализация). За последние несколько месяцев произошло 5 крупных поглощений: Google купил Looker, Salesforce купил Tableau, Sisense купил Periscope Data, Logi Analytics' купил Zoomdata, Alteryx купил ClearStory Data. Не будем дальше погружаться в корпоративный мир слияний и поглощений, стоит лишь отметить, что можно ожидать дальнейших изменений как в ценовой, так и в протекционистской политике новых обладателей BI-инструментов (как недавно нас обрадовал инструмент Alooma, вскоре после покупки их компанией Google, они перестают поддерживать все источники данных, кроме Google BigQuery :) ).

Читать полностью »

XLNet против BERT - 1

В конце июня коллектив из Carnegie Mellon University показал нам XLNet, сразу выложив публикацию, код и готовую модель (XLNet-Large, Cased: 24-layer, 1024-hidden, 16-heads). Это предобученная модель для решения разных задач обработки естественного языка.

В публикации они сразу же обозначили сравнение своей модели с гугловым BERT-ом. Они пишут, что XLNet превосходит BERT в большом количестве задач. И показывает в 18 задачах state-of-the-art результаты.
Читать полностью »

Применение компьютерного зрения в морских исследованиях или 12 человек на сундук мертвеца - 1

Горячо приветствую, уважаемые коллеги.
В сообществе OpenDataScience успешно развивается инициатива ML4SG — Machine Learning for Social Good. В её рамках стартовал целый ряд интересных проектов, которые в самых разных областях улучшают нашу с вами жизнь.

Мы хотели бы рассказать об одном из таких проектов под кодовым названием #proj_shipwrecks. Проект стартовал силами членов сообщества ODS, согласившимися в свое время поработать забесплатно над тем, что им нравится, но до чего по тем или иным причинам руки еще не дошли. Сейчас проект вырос в небольшой non-profit стартап, с целым рядом разных направлений исследований и разработки.

В рамках проекта мы стремимся помогать людям, занимающимся разного рода морскими исследованиями, от морских археологов, биологов и океанологов до команд спасения на воде, используя как свою экспертизу в области компьютерного зрения, так и придумывая новые, порой неожиданные ходы.

Читать полностью »

Нейронные сети предпочитают текстуры и как с этим бороться - 1

В последнее время вышло несколько статей с критикой ImageNet, пожалуй самого известного набора изображений, использующегося для обучения нейронных сетей.

В первой статье Approximating CNNs with bag-of-local features models works surprisingly well on ImageNet авторы берут модель, похожую на bag-of-words, и в качестве "слов" используют фрагменты из изображения. Эти фрагменты могут быть вплоть до 9х9 пикселей. И при этом, на такой модели, где полностью отсутствует какая-либо информация о пространственном расположении этих фрагментов, авторы получают точность от 70 до 86% (для примера, точность обычной ResNet-50 составляет ~93%).

Во второй статье ImageNet-trained CNNs are biased towards texture авторы приходят к выводу, что виной всему сам набор данных ImageNet и то, как изображения воспринимают люди и нейронные сети, и предлагают использовать новый датасет – Stylized-ImageNet.

Более подробно о том, что на картинках видят люди, а что нейронные сети Читать полностью »

Биометрическая идентификация человека – это одна из самых старых идей для распознавания людей, которую вообще попытались технически осуществить. Пароли можно украсть, подсмотреть, забыть, ключи – подделать. А вот уникальные характеристики самого человека подделать и потерять намного труднее. Это могут быть отпечатки пальцев, голос, рисунок сосудов сетчатки глаза, походка и прочее.

Face Anti-Spoofing или технологично узнаём обманщика из тысячи по лицу - 1

Конечно же, системы биометрии пытаются обмануть! Вот об этом мы сегодня и поговорим. Как злоумышленники пытаются обойти системы распознавания лица, выдав себя за другого человека и каким образом это можно обнаружить.

Читать полностью »

QA: Хакатоны - 1

Заключительная часть трилогии о хакатонах. В первой части я рассказал о мотивации к участию в таких мероприятиях. Вторая часть была посвящена ошибкам организаторов и их результатам. Заключительная часть ответит на вопросы, которые не поместились в первые две части.
Читать полностью »

Темная сторона хакатонов - 1

В предыдущей части трилогии я рассмотрел несколько причин для участия в хакатонах. Мотивация узнать много нового и выиграть ценные призы привлекает многих, но часто из-за ошибок организаторов или компаний-спонсоров мероприятие заканчивается неудачно и участники уходят недовольными. Чтобы такие неприятные случаи происходили реже, я написал этот пост. Вторая часть трилогии посвящена ошибкам организаторов. Читать полностью »

С появлением множества различных архитектур нейронных сетей, многие классические Computer Vision методы ушли в прошлое. Все реже люди используют SIFT и HOG для object detection, а MBH для action recognition, а если и используют, то скорее как handcrafted-признаки для соответствующих сеток. Сегодня мы рассмотрим одну из классических CV-задач, в которой первенство по-прежнему остается за классическими методами, а DL-архитектуры томно дышат им в затылок.

Deep Learning в вычислении оптического потока - 1

Читать полностью »

Почему вам стоит участвовать в хакатонах - 1

Примерно полтора года назад я начал участвовать в хакатонах. За этот временной промежуток я успел принять участие в более чем 20 мероприятиях различного масштаба и тематик в Москве, Хельсинки, Берлине, Мюнхене, Амстердаме, Цюрихе и Париже. Во всех мероприятиях я занимался анализом данных в том или ином виде. Мне нравится приезжать в новые для себя города, налаживать новые контакты, придумывать свежие идеи, реализовывать старые задумки за короткий промежуток времени и адреналин во время выступления и оглашения результатов.

Данный пост — первый из трех постов на тематику хакатонов, в нем я расскажу, что такое хакатоны, почему вам стоит начать участвовать в хакатонах. Второй пост будет о темной стороне данных мероприятий — про то как организаторы делали ошибки при проведении, и к чему они привели. Третий пост будет посвящен ответам на вопросы про около-хакатонную тематику.
Читать полностью »

SciPy, оптимизация с условиями - 1

SciPy (произносится как сай пай) — это основанный на numpy математический пакет, включающий в себя также библиотеки на C и Fortran. С SciPy интерактивный сеанс Python превращается в такую же полноценную среду обработки данных, как MATLAB, IDL, Octave, R или SciLab.

В этой статье рассмотрим основные приемы математического программирования — решения задач условной оптимизации для скалярной функции нескольких переменных с помощью пакета scipy.optimize. Алгоритмы безусловной оптимизации уже рассмотрены в прошлой статье. Более подробную и актуальную справку по функциям scipy всегда можно получить с помощью команды help(), Shift+Tab или в официальной документации.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js