В этом посте я расскажу историю появления Open Source библиотеки Albumentations как я ее запомнил. В технические детали углубляться не буду. Основная задача текста - логирование, то есть надо написать историю, которую мне будет интересно прочитать через 20 лет.
Рубрика «Блог компании Open Data Science» - 2
Рождение Albumentations
2021-12-09 в 12:59, admin, рубрики: Albumentations, computer vision, deep learning, open source, python, Алгоритмы, Блог компании Open Data Science, машинное обучение, обработка изображенийСобираем Свой Суперкомпьютер Недорого
2021-03-16 в 10:58, admin, рубрики: gpu, natural language processing, Nvidia, Блог компании Open Data Science, Компьютерное железо, машинное обучение, Развитие стартапа, суперкомпьютер
Нынче никого не удивишь достижениями искусственного интеллекта машинного обучения (ML) в самых разных областях. При этом доверчивые граждане редко задают два вопроса: (i) а какая собственно цена экспериментов и финальной системы и (ii) имеет ли сделанное хоть какую-то целесообразность? Самым важным компонентом такой цены являются как ни странно цена на железо и зарплаты людей. В случае если это все крутится в облаке, нужно еще умножать стоимость железа в 2-3 раза (маржа посредника).
И тут мы неизбежно приходим к тому, что несмотря на то, что теперь даже в официальные билды PyTorch добавляют бета-поддержку ROCm, Nvidia де-факто в этом цикле обновления железа (и скорее всего следующем) остается монополистом. Понятно, что есть TPU от Google и мифические IPU от Graphcore, но реальной альтернативы не в облаке пока нет и не предвидится (первая версия CUDA вышла аж 13 лет назад!).
Что делать и какие опции есть, когда зачем-то хочется собрать свой "суперкомпьютер", но при этом не хочется платить маржу, заложенную в продукты для ультра-богатых [мысленно вставить комментарий про госдолг США, майнинг, крах Бреттон-Вудсткой системы, цены на здравоохранение в странах ОЭСР]? Чтобы попасть в топ-500 суперкомпьютеров достаточно купить DGX Superpod, в котором от 20 до 100 с лишним видеокарт. Из своей практики — де-факто серьезное машинное обучение сейчас подразумевает карточки Nvidia в количестве примерно 8-20 штук (понятно что карточки бывают разные).
Пора избавляться от мышки или Hand Pose Estimation на базе LiDAR за 30 минут
2021-01-12 в 11:04, admin, рубрики: computer vision, deep learning, diy или сделай сам, future is now, machine learning, object detection, pose estimation, python, Блог компании Open Data Science, машинное обучение, Программирование, самоделки, сделай сам
Всем привет! Пока киберпанк еще не настолько вошел в нашу жизнь, и нейроинтерфейсы далеки от идеала, первым этапом на пути к будущему манипуляторов могут стать LiDAR. Поэтому, чтобы не скучать на праздниках, я решил немного пофантазировать на тему средств управления компьютером и, предположительно, любым устройством, вплоть до экскаватора, космического корабля, дрона или кухонной плиты.
Читать полностью »
Data Fest 2020 — полностью в Online уже завтра
2020-09-18 в 11:00, admin, рубрики: AI, big data, computer vision, data science, ml, ods, quantum computing, Блог компании Open Data Science, искусственный интеллект, конференции, машинное обучение, фестивальData Fest пройдет в этом году в онлайн формате 19 и 20 сентября 2020. Фестиваль организован сообществом Open Data Science и как обычно соберет исследователей, инженеров и разработчиков в области анализа данных, искусственного интеллекта и машинного обучения.
Регистрация. Ну а дальше к деталям.
Нет времени объяснять, сделай автопилот
2020-08-05 в 11:00, admin, рубрики: computer vision, machine learning, python, racing, Raspberry Pi, self-driving, Алгоритмы, Блог компании Open Data Science, машинное обучение, обработка изображений
Здравствуйте, товарищи!
На выходных проходил хакасборкатон — гонки на самоуправляемых моделях автомобилей на базе комплекта donkeycar при содействии Х5 и FLESS.
Задача заключалась в следующем: сначала надо было собрать машинку из запчастей, затем ее обучить проходить трассу. Победитель определялся по самому быстрому прохождению 3 кругов. За наезд на конус — дисквалификация.
Хотя подобная задача для машинного обучения не нова, но сложности могут поджидать на всем пути: от невозможности заставить нормально работать вайфай до нежелания обученной модели пилотировать железо по треку. И все это в жестких временных рамках!
Когда мы собирались на это соревнование, сразу было понятно, что будет очень весело и очень сложно, ведь нам давалось всего 5 часов с учётом перерыва на обед чтобы собрать машинку, записать датасет и обучить модель.
Читать полностью »
Рубрика «Читаем статьи за вас». Апрель 2020. Часть 1
2020-05-22 в 12:09, admin, рубрики: arxiv.org, data science, machine learning, ods, open data science, science, Алгоритмы, Блог компании Open Data Science, математика, машинное обучение, обработка изображенийПривет! Продолжаем публиковать рецензии на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество!
Статьи на сегодня:
- TResNet: High Performance GPU-Dedicated Architecture (DAMO Academy, Alibaba Group, 2020)
- Controllable Person Image Synthesis with Attribute-Decomposed GAN (China, 2020)
- Learning to See Through Obstructions (Taiwan, USA, 2020)
- Tracking Objects as Points (UT Austin, Intel Labs, 2020)
- CookGAN: Meal Image Synthesis from Ingredients (USA, UK, 2020)
- Designing Network Design Spaces (FAIR, 2020)
- Gradient Centralization: A New Optimization Technique for Deep Neural Networks (Hong Kong, Alibaba, 2020)
- When Does Unsupervised Machine Translation Work? (Johns Hopkins University, USA, 2020)
Лекарей сжигать нельзя беречь сейчас
2020-05-04 в 11:00, admin, рубрики: python, sap, Блог компании Open Data Science, глубинное обучение, графовые сверточные сети, графы, инновации, кадровые перестановки, математика, машинное обучение, мода, модели, организационные структуры и потоки, проекты, процессы, светская хроника, трансформации, тренды, управление, управление персоналом, управление проектамиTLDR: кому перестановки делают больнее — меряем свёрткой графов.
Код: RolX и ванильная трёхслойная GCN на мотифах.
Выгорание на рабочем месте повстречал ещё в начале своей карьеры — и с тех пор живо интересуюсь этим вопросом. Представьте обстановку. Большой проект внедрения SAP. Высокие ставки. Амбициозные сроки. Нагрузку каждый воспринимал по-своему. Кто-то сорвался и самоустранился от выполнения обязанностей, кто-то стал токсичнее, у меня самого в какой-то момент чувство юмора пропало. Ненадолго.
Управление изменениями (дисциплина, направленная на снижение напряжения во время внедрения информационных систем) многим обязана медикам. Во-первых, сам феномен эмоционального выгорания впервые зафиксировали у медицинских работников. Во-вторых, первое масштабное исследование, обобщающее 68 кейсов значительных перемен в английских госпиталях, открыло правила успеха для агентов изменения. Кроме того, моделирование эпидемий решает задачу максимизации влияния и позволяет внедрять нововведения быстрее и естественнее через (суб)оптимально выбранных людей на нужных местах.
Всё больше медучреждений перепрофилируют и это вызывает у работников ожидаемый стресс. Покажем, как его можно измерить, а уж где знаки препинания в заголовке ставить — решайте сами.Читать полностью »
Рубрика «Читаем статьи за вас». Март 2020. Часть 2
2020-04-15 в 11:13, admin, рубрики: arxiv.org, data science, machine learning, ods, open data science, science, Алгоритмы, Блог компании Open Data Science, математика, машинное обучение, обработка изображенийПривет!
Продолжаем публиковать рецензии на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество! Первая часть мартовской сборки обзоров опубликована ранее.
Статьи на сегодня:
- NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (UC Berkeley, Google Research, UC San Diego, 2020)
- Scene Text Recognition via Transformer (China, 2020)
- PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization (Imperial College London, Google Research, 2019)
- Lagrangian Neural Networks (Princeton, Oregon, Google, Flatiron, 2020)
- Deformable Style Transfer (Chicago, USA, 2020)
- Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need? (MIT, Google, 2020)
- Attentive CutMix: An Enhanced Data Augmentation Approach for Deep Learning Based Image Classification (Carnegie Mellon University, USA, 2020)
Рубрика «Читаем статьи за вас». Март 2020. Часть 1
2020-04-10 в 10:54, admin, рубрики: arxiv.org, data science, machine learning, ods, open data science, science, Алгоритмы, Блог компании Open Data Science, математика, машинное обучение, обработка изображений
Привет! Продолжаем публиковать рецензии на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество!
Статьи на сегодня:
- Fast Differentiable Sorting and Ranking (Google Brain, 2020)
- MaxUp: A Simple Way to Improve Generalization of Neural Network Training (UT Austin, 2020)
- Deep Nearest Neighbor Anomaly Detection (Jerusalem, Israel, 2020)
- AutoML-Zero: Evolving Machine Learning Algorithms From Scratch (Google, 2020)
- SpERT: Span-based Joint Entity and Relation Extraction with Transformer Pre-training (RheinMain University, Germany, 2019)
- High-Resolution Daytime Translation Without Domain Labels (Samsung AI Center, Moscow, 2020)
- Incremental Few-Shot Object Detection (UK, 2020)