Несколько дней назад мы публиковали обзор первого дня Data Science Weekend 2018, который прошел 2-3 марта на Мансарде Rambler&Co. Изучив практику использования алгоритмов машинного обучения, теперь перейдем к обзору второго дня конференции, в течении которого спикеры рассказывали об использовании различных инструментов дата инженера для нужд дата-платформ, ETL, сервисах подсказок при поиске и многом другом.
Рубрика «Блог компании New Professions Lab» - 2
Обзор второго дня Data Science Weekend 2018. Data Engineering, ETL, поисковые сервисы и многое другое
2018-03-26 в 8:29, admin, рубрики: Apache Ignite, apache solr, big data, data engineering, data mining, etl, Hadoop, hortonworks, python, Блог компании New Professions LabОбзор первого дня Data Science Weekend 2018. Практика машинного обучения, новый подход к соревнованиям и многое другое
2018-03-20 в 10:23, admin, рубрики: big data, data mining, python, анализ данных, Блог компании New Professions Lab, Компьютерное зрение, машинное обучение, нейронные сетиПривет! 2-3 марта на Мансарде наших партнёров, компании Rambler&Co, прошел уже традиционный Data Science Weekend, на котором было множество выступлений специалистов в области работы с данными. В рамках этой статьи расскажем вам о самых интересных моментах первого дня нашей конференции, когда все внимание было уделено практике использования алгоритмов машинного обучения, управлению коллективами и проведению соревнований в области Data Science.
Обзор нового алгоритма уменьшения размерности UMAP. Действительно ли он лучше и быстрее, чем t-SNE?
2018-03-06 в 9:59, admin, рубрики: big data, data mining, t-sne, umap, Блог компании New Professions Lab, визуализация данных, машинное обучение, обучение без учителя, уменьшение размерности данныхПривет! Задача снижения размерности является одной из важнейших в анализе данных и может возникнуть в двух следующих случаях. Во-первых, в целях визуализации: перед тем, как работать с многомерными данными, исследователю может быть полезно посмотреть на их структуру, уменьшив размерность и спроецировав их на двумерную или трехмерную плоскость. Во-вторых, понижение размерности полезно для предобработки признаков в моделях машинного обучения, поскольку зачастую неудобно обучать алгоритмы на сотне признаков, среди которых может быть множество зашумленных и/или линейно зависимых, от них нам, конечно, хотелось бы избавиться. Наконец, уменьшение размерности пространства значительно ускоряет обучение моделей, а все мы знаем, что время — это наш самый ценный ресурс.
UMAP (Uniform Manifold Approximation and Projection) — это новый алгоритм уменьшения размерности, библиотека с реализацией которого вышла совсем недавно. Авторы алгоритма считают, что UMAP способен бросить вызов современным моделям снижения размерности, в частности, t-SNE, который на сегодняшний день является наиболее популярным. По результатам их исследований, у UMAP нет ограничений на размерность исходного пространства признаков, которое необходимо уменьшить, он намного быстрее и более вычислительно эффективен, чем t-SNE, а также лучше справляется с задачей переноса глобальной структуры данных в новое, уменьшенное пространство.
В данной статье мы постараемся разобрать, что из себя представляет UMAP, как настраивать алгоритм, и, наконец, проверим, действительно ли он имеет преимущества перед t-SNE.
“Главный вызов — это кадровый голод” — панельная дискуссия о подборе команд по работе с данными. Data Science Week 2017
2017-10-24 в 6:44, admin, рубрики: big data, data engineering, data mining, data science, data scientist, machine learning, python, Блог компании New Professions Lab, машинное обучениеПривет! Публикуем заключительную часть обзора Data Science Week 2017, прошедшем в Москве 12-14 сентября. Сегодня расскажем о панельной дискуссии по теме “Подбор команд по работе с данными и оценка их эффективности”. Модератором выступила Ольга Филатова, вице-президент по персоналу и образовательным проектам Mail.ru Group, а участниками были Виктор Кантор (Яндекс), Андрей Уваров (МегаФон), Павел Клеменков (Rambler&Co) и Александр Ерофеев (Сбербанк).
“Без data engineer-а ценность модели аналитика стремится к нулю” — интервью с дата инженером Николаем Марковым
2017-10-20 в 12:43, admin, рубрики: big data, data engineering, data mining, data science, data scientist, machine learning, python, Блог компании New Professions Lab, машинное обучениеПривет! Data Engineering становится все более популярным, многие компании постепенно открывают соответствующие вакансии. В связи с этим мы взяли интервью у дата инженера и преподавателя на программах “Специалист по большим данным” и “Data Engineer” Николая Маркова о том, что должны уметь data scientist-ы и data engineer-ы, чего им чаще всего не хватает и как найти свое место в анализе данных.
Data Science Week 2017. Обзор второго и третьего дня
2017-10-12 в 11:06, admin, рубрики: big data, bitcoin, career, data mining, data science week, dsw, Блог компании New Professions Lab, машинное обучениеПривет! Продолжаем рассказывать о прошедшем 12-14 сентября форуме Data Science Week 2017, и на очереди обзор второго и третьего дня, где были затронуты вопросы построения рекомендательных систем, анализа данных в Bitcoin и построения успешной карьеры в области работы с данными.
Распознавание дорожных знаков с помощью CNN: Spatial Transformer Networks
2017-10-06 в 7:53, admin, рубрики: big data, data mining, deep learning, Блог компании New Professions Lab, дорожные знаки, машинное обучение, обработка изображений, распознавание изображенийПривет! Продолжаем серию материалов от выпускника нашей программы Deep Learning, Кирилла Данилюка, об использовании сверточных нейронных сетей для распознавания образов — CNN (Convolutional Neural Networks).
В прошлом посте мы начали разговор о подготовке данных для обучения сверточной сети. Сейчас же настало время использовать полученные данные и попробовать построить на них нейросетевой классификатор дорожных знаков. Именно этим мы и займемся в этой статье, добавив дополнительно к сети-классификатору любопытный модуль — STN. Датасет мы используем тот же, что и раньше.
Spatial Transformer Network (STN) — один из примеров дифференцируемых LEGO-модулей, на основе которых можно строить и улучшать свою нейросеть. STN, применяя обучаемое аффинное преобразование с последующей интерполяцией, лишает изображения пространственной инвариантности. Грубо говоря, задача STN состоит в том, чтобы так повернуть или уменьшить-увеличить исходное изображение, чтобы основная сеть-классификатор смогла проще определить нужный объект. Блок STN может быть помещен в сверточную нейронную сеть (CNN), работая в ней по большей части самостоятельно, обучаясь на градиентах, приходящих от основной сети.
Весь исходный код проекта доступен на GitHub по ссылке. Оригинал этой статьи можно посмотреть на Medium.
Чтобы иметь базовое представление о работе STN, взгляните на 2 примера ниже:
Слева: исходное изображение. Справа: то же изображение, преобразованное STN. Spatial transformers распознают наиболее важную часть изображения и затем масштабируют или вращают его, чтобы сфокусироваться на этой части.
Читать полностью »
4 причины стать Data Engineer
2017-09-14 в 10:55, admin, рубрики: big data, data engineering, data mining, data science, Блог компании New Professions Lab, машинное обучениеПривет! На данный момент в Data Science образовался огромный перекос в сторону data scientist-ов, об этой профессии сейчас знают даже те, кто никак не связан с IT, а новые вакансии появляются ежедневно. В свою очередь data engineer-ы не получают того внимания, которое бы соответствовало их важности для компании, поэтому в сегодняшнем посте мы бы хотели исправить эту несправедливость и объяснить, почему разработчикам и администраторам стоит немедленно начинать изучать Kafka и Spark и строить свой первый пайплайн.
В скором времени ни одна компания не сможет обойтись без Data Engineer
Давайте рассмотрим типичный рабочий день data scientist-а:
Получается, что около 80% своего времени data scientist тратит на сбор данных, их предобработку и очистку — процессы, которые напрямую не связаны с главной его обязанностью: поиском инсайтов и паттернов в данных. Конечно, подготовка данных требует высшего уровня мастерства, но это не data science, это не то, зачем тысячи людей сегодня стремятся попасть в эту отрасль.Читать полностью »
Data Science Week 2017: Рынок становится всё более зрелым
2017-09-08 в 10:52, admin, рубрики: big data, data mining, data science week, dsw, real estate, Блог компании New Professions Lab, машинное обучение, митап12-14 сентября мы в очередной раз организуем масштабное мероприятие — Data Science Week 2017.
Каждый раз, проектируя программу, мы стараемся подходить к ней с нуля, чтобы учесть какие-то последние тенденции в этой быстро меняющейся сфере и учитывать ее зрелость.
Мы поняли, что в очередной раз слушать как используется анализ данных, например, в классическом банкинге или на рынке интернет-рекламы, уже как-то неинтересно (хотя и там тоже идёт прогресс), и решили взять отрасль, относительно которой не так много публичных интересных кейсов — сфера недвижимости и всё, что с ней связано — и посвятить ей целый вечер.Читать полностью »
Генератор кликов на Python для программы Data Engineer
2017-08-03 в 8:39, admin, рубрики: big data, data engineering, data mining, python, selenium, Блог компании New Professions Lab, генератор кликовПроцесс разработки образовательной программы очень похож на процесс разработки нового продукта. И там, и там ты пытаешься вначале понять, а есть ли спрос на то, что ты собираешься производить? Существует ли в реальности та проблема, которую ты хочешь решить?
Предыстория
В этот раз для нас всё было довольно просто. Несколько выпускников нашей программы «Специалист по большим данным» в течение, наверное, года просили:
Сделайте для нас еще одну программу, где мы бы могли научиться работать с Kafka, Elasticsearch и разными инструментами экосистемы Hadoop, чтобы собирать пайплайны данных.
Потом со стороны работодателей стали «прилетать» запросы, которые собирательно можно описать так:
Data Engineer'ы – это очень горячие вакансии!
Реально их уже на протяжении полугода никак не можем закрыть.
Очень здорово, что вы обратили внимание именно на эту специальность. Сейчас на рынке очень большой перекос в сторону Data Scientist'ов, а больше половины работы по проектам – это именно инженерия.
С этого момента стало понятно, что спрос есть, и проблема существует. Надо бросаться в разработку программы!
Читать полностью »