После того, как вы проверили, что функциональность реализована нормально, она выкатывается в эксперимент, чтобы узнать, нравится ли новая версия пользователям.
Замечали, что обычно люди, ответственные за эксперименты, в итоге говорят, что данных недостаточно для решения? Часто это действительно так, но нередко всё дело в поломках системы экспериментов и учёта пользовательской статистики.
В этой статье мы рассмотрим типичные поломки, которые там встречаются, и у вас появится возможность, вернувшись на рабочее место, немножко побыть data scientist'ами и найти ошибки у себя в компании. Какие-то из них там наверняка есть.
В основе материала — расшифровка доклада Романа Поборчего с нашей декабрьской конференции Heisenbug 2017 Moscow.