Рубрика «Блог компании «Itseez»»

Кручинин Дмитрий, Долотов Евгений, Кустикова Валентина, Дружков Павел, Корняков Кирилл

Введение

В настоящее время машинное обучение является активно развивающейся областью научных исследований. Это связано как с возможностью быстрее, выше, сильнее, проще и дешевле собирать и обрабатывать данные, так и с развитием методов выявления из этих данных законов, по которым протекают физические, биологические, экономические и другие процессы. В некоторых задачах, когда такой закон определить достаточно сложно, используют глубокое обучение.

Глубокое обучение (deep learning) рассматривает методы моделирования высокоуровневых абстракций в данных с помощью множества последовательных нелинейных трансформаций, которые, как правило, представляются в виде искусственных нейронных сетей. На сегодняшний день нейросети успешно используются для решения таких задач, как прогнозирование, распознавание образов, сжатие данных и ряда других.
Читать полностью »

Ура! Организаторы Google Summer of Code приняли проект OpenCV для участия в Google Summer of Code 2014! С 10 марта начался приём заявок от студентов-участников. Давайте разберёмся, что это такое – GSoC, что за проект OpenCV и при чём здесь Itseez. А для начала – мотивирующее видео с результатами прошлого лета.

Читать полностью »

Алгоритм Улучшенной Самоорганизующейся Растущей Нейронной Сети (ESOINN)

Введение

В моей предыдущей статье о методах машинного обучения без учителя был рассмотрен базовый алгоритм SOINN — алгоритм построения самоорганизующихся растущих нейронных сетей. Как было отмечено, базовая модель сети SOINN имеет ряд недостатков, не позволяющих использовать её для обучения в режиме lifetime (т.е. для обучения в процессе всего срока эксплуатации сети). К таким недостаткам относилась двухслойная структура сети, требующая при незначительных изменениях в первом слое сети переобучать второй слой полностью. Также алгоритм имел много настраиваемых параметров, что затрудняло его применение при работе с реальными данными.

В этой статье будет рассмотрен алгоритм An Enhanced Self-Organizing Incremental Neural Network, являющийся расширением базовой модели SOINN и частично решающий озвученные проблемы.
Читать полностью »

В одном из проектов компании Itseez, связанных с компьютерным зрением, мы используем Raspberry Pi для обработки видео потока с веб-камеры, и недавно столкнулись с проблемой записи видео на флеш-карту. Трудность состояла в том, что ресурсы ЦП съедались другими более важными задачами, однако сохранять видео все же было нужно. Причем предпочтений, каким кодеком сжимать и какой формат использовать, не было, лишь бы это никак не сказывалось на fps (количестве кадров в секунду). Перепробовав большое число программных кодеков от RAW до H.264 (использовалась обертка OpenCV над FFmpeg), пришли к выводу, что ничего из этого не выйдет, т.к. при высокой нагрузке fps проседал с 20 до 5 кадров в секунду, при том что картинка – черно-белая с разрешением 320x240. Немного погуглив, выяснили, что в процессоре Raspberry Pi есть аппаратный кодер с поддержкой стандарта H.264 (насколько мне известно, лицензия приобретена только для него). Плюсом ко всему было то, что взаимодействие с кодером реализовано по стандарту OpenMAX, поэтому было решено взяться за написание кода с использованием OpenMAX, и посмотреть, что из этого получится. Получилось, кстати, очень даже недурно!
Читать полностью »

Автор: Виктор Ерухимов, исполнительный директор Itseez, председатель рабочей группы OpenVX

OpenVX: стандарт компьютерного зренияThe Khronos Group 18 ноября 2013 года представила предварительную спецификацию стандарта OpenVX 1.0 для компьютерного зрения. Поскольку Itseez был одним из инициаторов этой деятельности и активно участвовал в создании спецификации, мы решили рассказать про этот стандарт аудитории Хабрахабра.

Читать полностью »

Прошло уже больше года после завершения конкурса "Интернет-математика: Яндекс.Карты", но нас до сих пор спрашивают об алгоритме, который принёс нам победу в этом конкурсе. Узнав о том, что недавно Яндекс объявил о старте очередной "Интернет-математики", мы решили поделиться опытом нашего прошлогоднего участия и описать наш подход. Разработанный алгоритм смог с точностью 99.44% правильно определить лишние изображения в сериях панорамных снимков, например, как здесь:

Конкурс «Интернет математика: Яндекс.Карты» — опыт нашего участия и описание победившего алгоритма

В этой статье мы описываем основные идеи алгоритма и приводим его детали для интересующихся, рассказываем об извлечённых уроках и о том, как это всё вообще было.

Исходный код нашего решения доступен на github (C++ с использованием OpenCV).
Читать полностью »

Авторы: Анатолий Бакшеев, Кирилл Корняков(kirillkornyakov), Андрей Морозов(aod314), Вадим Писаревский, Олег Скляров(olegsklyarov), Евгений Таланин, Александр Шишков(AlexanderShishkov).

image image

Привет!

Мы рады сообщить, что 2 ноября увидела свет новая версия OpenCV, свободной библиотеки компьютерного зрения. Этот пост написан разработчиками библиотеки, работающими в компании Itseez. Мы перечислим основные нововведения с момента выхода предыдущей версии, стоит отметить, что их достаточно много: новые алгоритмы, ускорение существующих, поддержка новых платформ, обновление процесса разработки, интеграции и тестирования, а так же обновлённая документация. За время подготовки релиза было закрыто более 210 задач на трекере (hackathon, release candidate, release): патчи, исправления ошибок, расширение существующей функциональности.

Но обо всём по порядку.
Читать полностью »

Опубликовано Кириллом Корняковым [лидер команды разработчиков] 24 июня 2012.

Привет!

image

Этой записью мы открываем блог компании Itseez (от англ. it sees — «оно видит!»). Компания основана адептами компьютерного зрения, проработавшими в этой области более 13 лет, среди которых есть участники проекта OpenCV с первого дня его существования. Наша стратегия связана с разработкой технологий и продуктов в области компьютерного зрения под девизом ”Vision that works!”. Наши клиенты — Willow Garage, NVidia, Intel, Microsoft, несколько менее известных компаний и стартапов. На сегодняшний день коллектив Itseez — это команда из 40 инженеров и исследователей, многие сотрудники активно участвуют в образовательной деятельности: преподают в университете, публикуются в журналах и выступают на конференциях, а также проводят школы по компьютерному зрению.

На страницах блога мы бы хотели рассказывать о том, что интересного происходит в реальном и кибер-пространстве вокруг нас, а также в мире компьютерного зрения. Мы надеемся, что публикуемые материалы будут интересны людям, близким к машинному обучению, робототехнике, вычислительной фотографии, технологиям интеллектуального видеонаблюдения и дополненной реальности, а также к смежным направлениям Науки и Техники. Важной особенностью Itseez является то, что многие наши разработки являются open-source, поэтому мы постараемся подкреплять свои слова примерами реального кода.

Поскольку это первая запись в нашем блоге, хотелось бы поделиться чем-то интересным, поэтому мы расскажем о ключевом проекте компании — о разработке библиотеки алгоритмов компьютерного зрения OpenCV (о своем вкладе в ROS (Robot Operating System) и PCL (Point Cloud Library) мы пока умолчим). Подготовленный читатель, вероятно, удивится, задавшись вопросом: “Но ведь OpenCV разрабатывается Intel / Willow Garage!”, и будет прав, но лишь отчасти. Действительно, далеко не все знают, что большинство ведущих разработчиков OpenCV живут и трудятся в России, в городе Нижний Новгород, и являются сотрудниками компании Itseez. Поэтому, чтобы устранить недоразумения, первый пост мы решили посвятить изложению краткой истории OpenCV. Также, пользуясь случаем, в заключении мы поделимся некоторой инсайдерской информацией о будущем проекта.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js