Цель этого рассказа — поделиться способами решения проблемы, над которой работали авторы при разработке рекомендательного сервиса imhonet.ru. Поскольку проблема не является чисто научно-технической, а скорее находится на стыке технологий и бизнеса и может быть полезна более широкой аудитории, чем обычный технический отчёт, мы выбрали именно такой формат представления нашей работы — попытались написать рассказ настолько простым языком, насколько это возможно. Первая часть рассказа посвящена довольно подробному обоснованию того, как правильно измерять качество работы алгоритмов рекомендательной системы. А в конце иллюстративно перечислено несколько примеров, в которых мы проводили эти измерения для решения конкретных задач.
Рубрика «Блог компании DCA (Data-Centric Alliance)» - 2
Метрика рекомендательной системы imhonet.ru
2016-04-06 в 14:23, admin, рубрики: big data, алгоритм, Алгоритмы, Блог компании DCA (Data-Centric Alliance), рекомендацииBig Data от А до Я. Часть 4: Hbase
2016-04-01 в 13:08, admin, рубрики: big data, Hbase, Блог компании DCA (Data-Centric Alliance), Сетевые технологииПривет! Наконец-то долгожданная четвёртая статья нашего цикла о больших данных. В этой статье мы поговорим про такой замечательный инструмент как Hbase, который в последнее время завоевал большую популярность: например Facebook использует его в качестве основы своей системы обмена сообщений, а мы в data-centric alliance используем hbase в качестве основного хранилища сырых данных для нашей платформы управления данными Facetz.DCA
В статье будет рассказано про концепцию Big Table и её свободную реализацию, особенности работы и отличие как от классических реляционных баз данных (таких как MySQL и Oracle), так и key-value хранилищ, таких как Redis, Aerospike и memcached.
Заинтересовало? Добро пожаловать под кат.
Flume — управляем потоками данных. Часть 1
2016-03-29 в 15:44, admin, рубрики: big data, flume, Hadoop, Анализ и проектирование систем, Блог компании DCA (Data-Centric Alliance), разработка, хранение данныхПривет! В этом цикле статей я планирую рассказать о том, как можно организовать сбор и передачу данных с помощью одного из инструментов Hadoop — Apache Flume.
Рекурентная нейронная сеть в 10 строчек кода оценила отзывы зрителей нового эпизода “Звездных войн”
2016-01-11 в 13:35, admin, рубрики: keras, python, theano, анализ тональности, Блог компании DCA (Data-Centric Alliance), машинное обучение, нейронные сетиHello, Habr! Недавно мы получили от “Известий” заказ на проведение исследования общественного мнения по поводу фильма «Звёздные войны: Пробуждение Силы», премьера которого состоялась 17 декабря. Для этого мы решили провести анализ тональности российского сегмента Twitter по нескольким релевантным хэштегам. Результата от нас ждали всего через 3 дня (и это в самом конце года!), поэтому нам нужен был очень быстрый способ. В интернете мы нашли несколько подобных онлайн-сервисов (среди которых sentiment140 и tweet_viz), но оказалось, что они не работают с русским языком и по каким-то причинам анализируют только маленький процент твитов. Нам помог бы сервис AlchemyAPI, но ограничение в 1000 запросов в сутки нас также не устраивало. Тогда мы решили сделать свой анализатор тональности с блэк-джеком и всем остальным, создав простенькую рекурентную нейронную сеть с памятью. Результаты нашего исследования были использованы в статье “Известий”, опубликованной 3 января.
В этой статье я немного расскажу о такого рода сетях и познакомлю с парой классных инструментов для домашних экспериментов, которые позволят строить нейронные сети любой сложности в несколько строк кода даже школьникам. Добро пожаловать под кат.
Читать полностью »
Оптимизация гиперпараметров в Vowpal Wabbit с помощью нового модуля vw-hyperopt
2015-12-18 в 12:21, admin, рубрики: bayesian optimization, big data, classification, github, large scale machine learning, vowpal wabbit, Алгоритмы, байесовская оптимизация, Блог компании DCA (Data-Centric Alliance), гиперпараметры, машинное обучение, метки: bayesian optimization, classification, large scale machine learning, vowpal wabbit, байесовская оптимизация, гиперпараметрыПривет! В этой статье речь пойдет о таком не очень приятном аспекте машинного обучения, как оптимизация гиперпараметров. Две недели назад в очень известный и полезный проект Vowpal Wabbit был влит модуль vw-hyperopt.py, умеющий находить хорошие конфигурации гиперпараметров моделей Vowpal Wabbit в пространствах большой размерности. Модуль был разработан внутри DCA (Data-Centric Alliance).
Для поиска хороших конфигураций vw-hyperopt использует алгоритмы из питоновской библиотеки Hyperopt и может оптимизировать гиперпараметры адаптивно с помощью метода Tree-Structured Parzen Estimators (TPE). Это позволяет находить лучшие оптимумы, чем простой grid search, при равном количестве итераций.
Эта статья будет интересна всем, кто имеет дело с Vowpal Wabbit, и особенно тем, кто досадовал на отсутствие в исходном коде способов тюнинга многочисленных ручек моделей, и либо тюнил их вручную, либо кодил оптимизацию самостоятельно.
Читать полностью »