Ряд моих коллег сталкиваются с проблемой, что для расчета какой-то метрики, например, коэффициента конверсии, приходится кверить всю базу данных. Или нужно провести детальное исследование по каждому клиенту, где клиентов миллионы. Такого рода квери могут работать довольно долго, даже в специально сделанных для этого хранилищах. Не очень-то прикольно ждать по 5-15-40 минут, пока считается простая метрика, чтобы выяснить, что тебе нужно посчитать что-то другое или добавить что-то еще.
Одним из решений этой проблемы является сэмплирование: мы не пытаемся вычислить нашу метрику на всем массиве данных, а берем подмножество, которое репрезентативно представляет нам нужные метрики. Это сэмпл может быть в 1000 раз меньше нашего массива данных, но при этом достаточно хорошо показывать нужные нам цифры.
В этой статье я решил продемонстрировать, как размеры выборки сэмплирования влияют на ошибку конечной метрики.