Рубрика «BigData» - 9

Искусственный интеллект и почему мой компьютер меня не понимает?

Гектор Левекwiki утверждает, что его компьютер тупой. И ваш тоже. Siri и голосовой поиск Google умеют понимать заготовленные предложения. Например «Какие фильмы будут показывать неподалёку в 7 часов?» Но что насчёт вопроса «Может ли аллигатор пробежать стометровку с барьерами?» Такой вопрос никто раньше не задавал. Но любой взрослый может найти ответ на него (Нет. Аллигаторы не могут участвовать в беге с барьерами). Но если вы попытаетесь ввести этот вопрос в Google, то получите тонны информации о спортивной команде по лёгкой атлетике Florida Gators. Другие поисковые системы, такие как Wolfram Alpha, тоже не способны найти ответ на поставленный вопрос. Watson, компьютерная система выигравшая викторину «Jeopardy!», вряд ли покажет себя лучше.
Читать полностью »

Во второй части статьи рассказывалось о механизмах обнаружения ошибок в процессе обработки.

Обработка завершилась с ошибкой, что делать дальше? Вполне возможно, что потеряна связь с одним из узлов кластера или временно недоступна база данных. В этом случае, нельзя с уверенностью сказать, какие операции выполнились успешно, а какие — нет. Если все операции в цепочке повторно применимы (идемпотентны), например установка флага, то можно просто перезапустить обработку. Если нет, то на помощь приходят механизмы транзакций Storm.
Читать полностью »

В первой части рассматривались базовые понятия Storm.

Разные классы задач предъявляют различные требования к надежности. Одно дело пропустить пару записей при подсчете статистики посещений, где счет идет на сотни тысяч и особая точность не нужна. И совсем другое — потерять, например, информацию о платеже клиента.

Далее рассмотрим о механизмы защиты от потери данных, которые реализованы в Storm.
Читать полностью »

В 2011 году Twitter открыл, под лицензией Eclipse Public License, проект распределенных вычислений Storm. Storm был создан в компании BackType и перешел к Twitter после покупки.

Storm это система ориентированная на распределенную обработку больших потоков данных, аналогичная Apache Hadoop, но в реальном времени.

Ключевые особенности Storm:

  • Масштабируемость. Задачи обработки распределяются по узлам кластера и потокам на каждом узле.
  • Гарантированная защита от потери данных.
  • Простота развертывания и спровождения.
  • Восстановление после сбоев. Если какой либо из обработчиков отказывает, задачи переадресуются на другие обработчики.
  • Возможность написания компонентов не только на Java. Простой Multilang protocol с использованием JSON объектов. Есть готовые адаптеры для языков Python, Ruby и Fancy.

В первой части рассматриваются базовые понятия и основы создания приложения c использованием Storm версии 0.8.2.
Читать полностью »

MapReduce 2.0. Какой он современный цифровой слон?

Если ты ИТшник, то нельзя просто так взять и выйти на работу 2-го января: пересмотреть 3-ий сезон битвы экстрасенсов или запись программы «Гордон» на НТВ (дело умственных способностей вкуса).
Нельзя потому, что у других сотрудников обязательно будут для тебя подарки: у секретарши закончился кофе, у МП — закончились дедлайны, а у администратора баз данных — амнезия память.
Оказалось, что инженеры из команды Hadoop тоже любят побаловать друг друга новогодними сюрпризами.

2008

2 января. Упуская подробное описание эмоционально-психологического состояния лиц, участвующих в описанных ниже событиях, сразу перейду к факту: поставлен таск MAPREDUCE-279 «Map-Reduce 2.0». Оставив шутки про число, обращу внимание, что до 1-ой стабильной версии Hadoop остается чуть менее 4 лет.

За это время проект Hadoop пройдет эволюцию из маленького инновационного снежка, запущенного в 2005, в большой снежный com ком, надвигающийся на ИТ, в 2012.
Ниже мы предпримем попытку разобраться, какое же значение январский таск MAPREDUCE-279 играл (и, уверен, еще сыграет в 2013) в эволюции платформы Hadoop. Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js