Рубрика «BigData» - 2

Когда вы сталкиваетесь с новой уязвимостью, какая мысль приходит первой? Конечно, отреагировать как можно быстрее. Однако, скорость — всего лишь одно из условий эффективной борьбы с ИБ-угрозами. Когда речь идет о корпоративной безопасности, не менее важно безошибочно определять, на что стоит реагировать в первую очередь. Недооцененная угроза может стать причиной серьезных убытков или потери деловой репутации. Но если число уязвимостей постоянно растет, как быстро оценить их значимость и не упустить важные детали?

Скрытая угроза — анализ уязвимостей при помощи графа новостей - 1
Динамика числа уязвимостей по группам CVSS (источник — vulners.com)
Читать полностью »

В данной статье речь пойдет об использовании открытой платформы Apache Flink для обнаружения цепочки последовательности событий. Статья подойдет как для начинающих разработчиков в области обработки потоковых данных, так и для тех, кто желает познакомиться с Apache Flink.

Ни для кого не секрет, что на данный момент существуют различные подходы к обработке, хранению, фильтрации и анализу больших данных. В отдельный класс можно выделить системы, построенные на событийной архитектуре (Event-Driven Architecture). Данные системы призваны решать различные задачи, в том числе в режимах близких к реальному времени. Одной из таких задач является обнаружение (детектирование, идентификация) сложных цепочек связанных событий на больших входных потоках данных (FlinkCEP — Pattern Detection). Обычно, данная задача, решается системами комплексной обработки событий (CEP), которые должны обрабатывать сотни, а порой и тысячи определенных пользователем шаблонов на входном потоке данных в поисках определенного события, аномалий, системах мошенничества и даже предсказании будущего на основе текущих событий. В статье речь пойдет о библиотеке FlinkCep Apache Flink, которая позволяет решать подобные проблемы.
Читать полностью »

Использование машинного обучения в статическом анализе исходного кода программ

Машинное обучение плотно укоренилось в различных сферах деятельности людей: от распознавания речи до медицинской диагностики. Популярность этого подхода столь велика, что его пытаются использовать везде, где только можно. Некоторые попытки заменить классические подходы нейросетями оканчиваются не столь уж успешно. Давайте взглянем на машинное обучение с точки зрения задач создания эффективных статических анализаторов кода для поиска ошибок и потенциальных уязвимостей.
Читать полностью »

Привет!

В условиях многообразия распределенных систем, наличие выверенной информации в целевом хранилище является важным критерием непротиворечивости данных.

На этот счет существует немало подходов и методик, а мы остановимся на реконсиляции, теоретические аспекты которой были затронуты вот в этой статье. Предлагаю рассмотреть практическую реализацию данной системы, масштабируемой и адаптированной под большой объем данных.

Как реализовать этот кейс на старом-добром Python — читаем под катом! Поехали!

Multiprocessing и реконсиляция данных из различных источников - 1

(Источник картинки)
Читать полностью »

Перед вами перевод статьи из блога Seattle Data Guy. В ней авторы выделили 5 наиболее популярных ресурсов для обработки Big Data на текущий момент.

От Hadoop до Cassandra: 5 лучших инструментов для работы с Big Data - 1

Сегодня любая компания, независимо от ее размера и местоположения, так или иначе имеет дело с данными. Использование информации в качестве ценного ресурса, в свою очередь, подразумевает применение специальных инструментов для анализа ключевых показателей деятельности компании. Спрос на аналитику растет пропорционально ее значимости, и уже сейчас можно определить мировые тенденции и перспективы в этом секторе. Согласно мнению International Data Corporation, в 2019 году рынок Big Data и аналитики готов перешагнуть порог в 189,1 миллиарда долларов.Читать полностью »

В 2008 BigData была новым термином и модным трендом. В 2019 BigData – это объект продажи, источник прибыли и повод для новых законопроектов.

Осенью прошлого года российское правительство инициировало законопроект о регулировании больших данных. Запрещается идентифицировать по информации людей, но разрешается делать это по запросу федеральных органов. Обработка BigData для третьих лиц – только после уведомления Роскомнадзора. Под закон попадают компании, в распоряжении которых больше 100 тысяч сетевых адресов. И, конечно, куда без реестров – предполагается создание такового со списком операторов БД. И если до этого BigData не всеми воспринималась всерьез, то теперь с ней придется считаться.

Не могу обойти стороной БД и я, как директор компании-разработчика биллинга, который эту самую BigData обрабатывает. Поразмышляю о больших данных через призму операторов связи, через чьи биллинговые системы ежедневно проходят потоки информации о тысячах абонентов.
Читать полностью »

Сообщество ML-REPA приглашает на открытый митап по вопросам воспроизводимости и управлению экспериментами в computer vision, который пройдет 15 августа в офисе Райффайзенбанк в Нагатино.

На митапе будем разбираться с особенностями обеспечения воспроизводимости экспериментов в Computer Vision, автоматизации пайплайнов и версионирование моделей. Где может пригодиться DVC или MLFlow? А где лучше написать свой “велосипед“? Также глубже посмотрим на реализацию Catalyst и его применение.

Data and Models Version control in Computer Vision meetup - 1
Читать полностью »

Хотите узнать о трех методах получения данных для своего следующего проекта по ML? Тогда читайте перевод статьи Rebecca Vickery, опубликованной в блоге Towards Data Science на сайте Medium! Она будет интересна начинающим специалистам.

Извлечение данных при машинном обучении - 1

Получение качественных данных — это первый и наиболее важный шаг в любом проекте по машинному обучению. Специалисты Data Science часто применяют различные методы получения датасетов. Они могут использовать общедоступные данные, а также данные, доступные по API или получаемые из различных баз данных, но чаще всего комбинируют перечисленные методы.

Цель этой статьи — представить краткий обзор трех разных методов извлечения данных с использованием языка Python. Я расскажу, как делать это с помощью Jupyter Notebook. В своей предыдущей статье я писала о применении некоторых команд, запускаемых в терминале.Читать полностью »

Data Science Digest (July 2019) - 1

Приветствую всех!

Лето в полном разгаре, и если вы планируете быть в Одессе 5-го июля, приглашаю вас на ODS митап и дата-бар, который организовывает одесская ODS.ai команда. Напоминаю, что у дайджеста есть свой Telegram-канал и страницы в соцсетях (Facebook, Twitter, LinkedIn, Medium), где я ежедневно публикую ссылки на полезные материалы. Присоединяйтесь!

А пока предлагаю свежую подборку материалов под катом.
Читать полностью »

Привет!

Не секрет, что для оценки платежеспособности клиентов банки используют данные из различных источников (кредитное бюро, мобильные операторы и т.д.). Количество внешних партнёров может достигать нескольких десятков, а аналитиков в нашей команде наберётся лишь несколько человек. Возникает задача оптимизации работы небольшой команды и передачи рутинных задач вычислительным системам.

Как данные попадают в банк, и как команда аналитиков следит за этим процессом, разберём в данной статье.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js