Рубрика «big data» - 80

Специально для тех, кто не успел зарегистрироваться на Superjob Data Science Meetup, мы организуем прямую трансляцию события на Youtube или Facebook.

Начало в 19:00 по московскому времени.
image
Читать полностью »

Довольно часто enterprise задачи по обработке данных затрагивают данные, сопровождаемые временной меткой. В R такие метки, обычно хранятся как класс POSIXct. Выбор методов работы с таким типом данных по принципу аналогии может привести к большому разочарованию и убеждению о крайней медлительности R. Хотя если взглянуть на эту чуть более пристально, то оказывается, что дело не совсем в R, а в руках и голове.

Ниже затрону пару кейсов, которые встретились в этом месяце и возможные варианты их решения. В ходе решения появляются весьма интересные вопросы. Заодно упомяну инструменты, которые оказываются крайне полезными для решения подобных задачек. Практика показала, что об их существовании знают немногие.

Читать полностью »

В современном машинном обучении и науке о данных можно выделить несколько трендов. Прежде всего, это глубокое обучение: распознавание изображений, аудио и видео, обработка текстов на естественных языках. Еще одним трендом становится обучение с подкреплением — reinforcement learning, позволяющее алгоритмам успешно играть в компьютерные и настольные игры, и дающее возможность постоянно улучшать построенные модели на основе отклика внешней среды.

Есть и еще один тренд, менее заметный, так как его результаты для внешних наблюдателей выглядят не так впечатляюще, но не менее важный — автоматизация машинного обучения. В связи с его стремительным развитием вновь актуальным становится вопрос о том, не будут ли data scientist’ы в конце концов автоматизированы и вытеснены искусственным интеллектом.
Читать полностью »

Введение

cap

Давно хотел написать про мифы о CAP теореме, но как-то все не доходили руки. Однако, почитав очередной опус, схватился за голову и решил разложить все по полочкам, чтобы в мозгах возникла стройная картина.

Событие, когда какая-то статья вызывает бурю эмоций, — крайне редкое. Первый раз такое возникло, когда я прочитал про chained replication. Меня пытались убедить, что это мощный подход и что это лучшее, что могло произойти с консистентной репликацией. Я сейчас не буду приводить доводы, почему это плохо работает, а просто приведу говорящую цитату из статьи Chain Replication metadata management:

Split brain management is a thorny problem. The method presented here is one based on pragmatics. If it doesn’t work, there isn’t a serious worry, because Machi’s first serious use case all require only AP Mode. If we end up falling back to “use Riak Ensemble” or “use ZooKeeper”, then perhaps that’s fine enough.

В моем вольном пересказе это означает примерно следующее: "У нас тут есть некий алгоритм. Мы не знаем, будет ли он работать правильно или нет. Да нам это и не важно". Хотя бы честно, сэкономило кучу времени, спасибо авторам.

И тут, значит, попадается на глаза статья: Spanner, TrueTime & The CAP Theorem. Её мы разберем по полочкам ближе к концу, вооружившись понятиями и знаниями. А перед этим разберем самые распространенные мифы, связанные с CAP теоремой.

Читать полностью »

imageData Science — это совокупность понятий и методов, позволяющих придать смысл и понятный вид огромным объемам данных.

Каждая из глав этой книги посвящена одному из самых интересных аспектов анализа и обработки данных. Вы начнете с теоретических основ, затем перейдете к алгоритмам машинного обучения, работе с огромными массивами данных, NoSQL, потоковым данным, глубокому анализу текстов и визуализации информации. В многочисленных практических примерах использованы сценарии Python.

Обработка и анализ данных — одна из самых горячих областей IT, где постоянно требуются разработчики, которым по плечу проекты любого уровня, от социальных сетей до обучаемых систем. Надеемся, книга станет отправной точкой для вашего путешествия в увлекательный мир Data Science.
Читать полностью »

Несмотря на то, что задачи рядового бизнеса очень часто далеки от популярной темы больших данных и машинного обучения и часто связаны с обработкой относительно малых объёмов информации [десятки мегабайт — десятки гигабайт], размазанной в произвольных представлениях по различным видам источников, применение R в качестве основного инструмента позволяет легко и элегантно автоматизировать и ускорить эти задачи.

И, естественно, после проведения анализа необходимо все это презентовать, для чего можно с успехом использовать Shiny. Далее я приведу ряд трюков и подходов, которые могут помочь в этой задачах. Уверен, что любой практикующий аналитик сможет легко добавить свои хитрости, все зависит от решаемого класса задач.

Читать полностью »

Superjob приглашает на Data Science Meetup. Встречаемся 2 марта в нашем офисе на Малой Дмитровке.

image

Темы и спикеры:

  • «Применение алгоритмов поиска нечетких дубликатов в поиске вакансий»

Дмитрий Кожокарь, старший разработчик Superjob, расскажет об опыте создания эффективного алгоритма по поиску нечетких дубликатов среди большого количества полуструктурированных текстовых записей. В докладе рассматривается использование функции из семейства locality-sensitive hashing с дополнительными оптимизациями для выявления схожих вакансий и последующего объединения их в кластеры.
Читать полностью »

В прошлом в Интернете мы стали видеть рекламу товаров и услуг, к которым недавно проявили интерес. В будущем реклама сама научится предугадывать наши желания и спрос. Базой для таких разработок являются анализируемые компьютерным алгоритмом гигантские объемы информации — так называемые big data. Чем больше объём информации и база данных, тем точнее и детальнее будет результат анализа.

Социальные сети хранят огромное количество информации о нас, как публичной,Читать полностью »

enter image description here

Привет! Меня зовут Александр Крашенинников, я руковожу DataTeam в Badoo. Сегодня я поделюсь с вами простой и элегантной утилитой для распределённого выполнения команд в стиле xargs, а заодно расскажу историю её возникновения.

Наш отдел BI работает с объёмами данных, для обработки которых требуются ресурсы более чем одной машины. В наших процессах ETL (Extract Transform Load) в ход идут привычные миру Big Data распределённые системы Hadoop и Spark в связке с OLAP-базой Exasol. Использование этих инструментов позволяет нам горизонтально масштабироваться как по дисковому пространству, так и по CPU/ RAM.

Безусловно, в наших процессах ETL существуют не только тяжеловесные задачи на кластере, но и машинерия попроще. Широкий пласт задач решается одиночными PHP/ Python-скриптами без привлечения гигабайтов оперативной памяти и дюжины жёстких дисков. Но в один прекрасный день нам потребовалось адаптировать одну CPU-bound задачу для выполнения в 250 параллельных инстансов. Настала пора маленькому Python-скрипту покинуть пределы родного хоста и устремиться в большой кластер!

Читать полностью »

Вебинар: Введение в Singularity - 1

Команда FlyElephant приглашает всех на вебинар "Введение в Singularity", который проведет
Gregory Kurtzer (HPC Systems Architect и Technical Lead в Lawrence Berkeley National Laboratory).
Вебинар будет проходить завтра, 15 февраля, в 19:00 (EET) / 9:00 am (PST). Язык — английский.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js