Рубрика «big data» - 52

В мире энтерпрайза наступило пресыщение фронтовыми системами, шинами данных и прочими классическими системами, которые внедряли все кому не лень последние 10-15 лет. Но есть один сегмент, который до недавнего времени был в статусе «все хотят, но никто не знает, что это». И это Big Data. Красиво звучит, продвигается топовыми западными компаниями – как не стать лакомым кусочком?

Распределенное хранилище данных в концепции Data Lake: с чего начать - 1

Но пока большинство только смотрит и приценивается, некоторые компании начали активно внедрять решения на базе этого технологического стека в свой IT ландшафт. Важную роль в этом сыграло появление коммерческих дистрибутивов Apache Hadoop, разработчики которых обеспечивают своим клиентам техническую поддержку. Ощутив необходимость в подобном решении, один из наших клиентов принял решение об организации распределенного хранилища данных в концепции Data Lake на базе Apache Hadoop.
Читать полностью »

Привет! Мы, наконец, дождались еще одной части серии материалов от выпускника наших программ “Специалист по большим данным” и “Deep Learning”, Кирилла Данилюка, об использовании популярных на сегодняшний день нейронных сетей Mask R-CNN как части системы для классификации изображений, а именно оценки качества приготовленного блюда по набору данных с сенсоров.

Рассмотрев в предыдущей статье игрушечный набор данных, состоящий из изображений дорожных знаков, теперь мы можем перейти к решению задачи, с которой я столкнулся в реальной жизни: «Возможно ли реализовать Deep Learning алгоритм, который мог бы отличить блюда высокого качества от плохих блюд по одной фотографии?». Вкратце, бизнес хотел вот это:

ConvNets. Создание прототипа проекта с помощью Mask R-CNN - 1

Что представляет бизнес, когда думает о машинном обучении:
Читать полностью »

image

Дисклеймер

Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Введение

Существет несколько определений ИСППР, которые, в общем-то, крутятся вокруг одного и того же функционала. В общем виде, ИСППР — это такая система, которая ассистирует ЛПР (Лицам, Принимающим Решения) в принятии этих самых решений, используя инструментарии дата майнинга, моделирования и визуализации, обладает дружелюбным (G)UI, устойчива по качеству, интерактивна и гибка по настройкам.

Зачем нужны СППР:

  1. Сложность в принятии решений
  2. Необходимость в точной оценке различных альтернатив
  3. Необходимость предсказательного функционала
  4. Необходимость мультипотокового входа (для принятия решения нужны выводы на основе данных, экспертные оценки, известные ограничения и т.п.)

Читать полностью »

Всем привет! В этой статье мы продолжаем наш рассказ про ключевые анонсы конференции Build. Прошлый выпуск мы посвятили железячным анонсам (от облака до девкитов для разработчиков) и инструментам разработки. Сегодня мы расскажем про облако и ботов.

50 анонсов Build 2018. Часть 2. Azure & Bots - 1

В этом выпуске:

  • Обзор архитектуры Azure от Марка Руссиновича
  • Ключевые анонсы про Microsoft Azure
  • Обновления в инструментах для диалоговых интерфейсов
  • Alexa и Кортана: дружба-жвачка

Читать полностью »

Инженеров и компьютерных лингвистов – к «Диалогу» - 1С 30 мая по 2 июня в Российском государственном гуманитарном университете (РГГУ) пройдет 24-ая международная научная конференция по компьютерной лингвистике «Диалог». Мы уже рассказывали о том, что такое «Диалог» и почему ABBYY его основной организатор. В этом посте мы анонсируем основные темы конференции, ключевых спикеров и их доклады, публикуем информацию о соревнованиях по разрешению лексической многозначности на русском языке Dialogue Evaluation и другие подробности о конференции. Читать полностью »

Предисловие

Изучать что-то новое всегда интересно, это захватывает тебя полностью, по крайней мере у меня так. Вот и в этот раз, увлёкшись изучением программирования на языке Python, задался вопросом, где его можно применить, кроме как при создании фотосепаратора (статья про него будет чуть позже) и программы учета продаж, и натолкнулся на статью про большие данные (Big Data). Изучив материалы по Big Data, понял, что направление это весьма перспективно и стоит потратить время на его изучение.

Читать полностью »

Если менеджеру попытаться разобраться в этой области и получить конкретные бизнес-ответы, то, скорее всего, страшно заболит голова и екнет сердце от ощущения ежеминутно упускаемой выгоды.

"AlphaGo обыграл чемпиона по Go" впервые за всю историю человечества, скоро наши улицы заполонят беспилотные автомобили, распознавание лиц и голоса теперь в порядке вещей, а в квартиру к нам завтра постучатся AI-секс-куклы с грудью наивысшего размера с шампанским под мышкой и настраиваемым уровнем интенсивности и продолжительности оргазма.

Все оно так, но что делать-то прямо сейчас. Как на этом заработать в краткосрочной перспективе? Как заложить прочный фундамент на будущее?

Постараюсь дать исчерпывающие ответы на все мучающие вас вопросы, «вскрыть» подводные камни и, главное — здраво оценить риски в AI и научиться ими правильно управлять. Ведь то, что не понимаем, то и не “танцуем”.

Читать полностью »

Доброго времени суток, уважаемыее! В данной публикации речь пойдет о модели прогноза спроса на товары в сетевых магазинах и ее реализации на C++.

Постановка задачи

Допустим, у нас имеется сеть магазинов, в каждый из которых завозят товары. Товары (для модели прогноза) попадают в каждый магазин произвольным образом. За некий период времени мы имеем статистику — сколько в каждом магазине продано тех или иных товаров. Требуется спрогнозировать продажи товаров за период времени, аналогичный выбранному, для всех магазинов по всем товарам, которые в них не завозились.

Примечания и допущения постановки задачи

  • Товары, завезенные в магазины, не заканчивались за период сбора статистики.
  • Если в магазин завезли новые для него товары (при том, что старые товары остались), продажи не перераспределяться между старыми и новыми товарами. Статистика по старым товарам останется прежней, просто кто-то дополнительно покупает новые товары. Прогнозирование при невыполнении этого условия потребует дополнительных данных о том, как насыщается спрос при увеличении количества товаров.
  • Период, за который собирали статистику, и период, для которого нужно сделать прогноз, идентичны по спросу.

Читать полностью »

image

Привет. В этот раз снова о Data Science. Думаю, многим знакома методология CRISP-DM, о которой говорят на большинстве курсов, но вот про первый пункт (business understanding) информации достаточно мало, в зря, ведь он очень важный.

Поэтому в этой статье мы поговорим о взаимодействии с бизнесом и о том, какие обычно бывают проблемы и сложности в этом вопросе. Давайте разберем все на примере.Читать полностью »

Грузим терабайты бочками или SparkStreaming vs Spring+YARN+Java - 1

В рамках проекта интеграции GridGain и хранилища на базе Hadoop (HDFS + HBASE) мы столкнулись с задачей получения и обработки существенного объема данных, примерно до 80 Тб в день. Это необходимо для построения витрин и для восстановления удаленных в GridGain данных после их выгрузки в наше долговременное хранилище. В общем виде, можно сказать, что мы передаём данные между двумя распределёнными системами обработки данных при помощи распределённой системы передачи данных. Соответственно, мы хотим рассказать о тех проблемах, с которыми столкнулась наша команда при реализации данной задачи и как они были решены.

Так как инструментом интеграции является кафка (весьма подробно об этом инструменте описано в статье Михаила Голованова), естественным и легким решением тут выглядит использование SparkStreaming. Легким, потому что не нужно особо беспокоиться о падениях, переподключениях, коммитах и т.д. Spark известен, как быстрая альтернатива классическому MapReduce, благодаря многочисленным оптимизациям. Нужно лишь настроиться на топик, обработать батч и сохранить в файл, что и было реализовано. Однако в ходе разработки и тестирования была замечена нестабильность работы модуля приема данных. Для того чтобы исключить влияние потенциальных ошибок в коде, был произведен следующий эксперимент. Был выпилен весь функционал обработки сообщений и оставлено только прямое сохранение сразу в avro:
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js