Рубрика «big data» - 39

Что делать с людьми, которых заменят роботы? - 1

В этой предновогодней публикации мы решили немного порассуждать о будущем в мире роботов и о роли человека в нем.

Предсказывать будущее в наши дни стало абсолютным must have среди экспертов. Когда технологии меняют мир настолько стремительно, очень хочется заглянуть хотя бы на несколько лет вперед. Цели разные. Потребителям — пофантазировать, восхититься и/или ужаснуться, бизнесам — скорректировать планы, политикам — продумать меры по сохранению спокойствия в социуме на случай «большого технологического шухера».Читать полностью »

Коммерческий автор и переводчик Полина Кабирова специально для Нетологии адаптировала статью американского аналитика Тавиша Шриваставы о том, как процесс автоматизации влияет на data scientist.

Введение

Автоматизация влияет на профессиональную деятельность во всех отраслях. С одной стороны, автоматизация помогает эффективнее управлять бизнесом, а с другой – ведет к постоянному изменению набора необходимых навыков.
Несоответствие необходимому набору навыков приводит к потере работы. Проиллюстрирую эту мысль двумя сценариями.

Сценарий 1 – Ручной труд

4 секрета, как не потерять работу в data science - 1
Читать полностью »

Переход с Redshift на ClickHouse - 1

Долгое время в iFunny использовался Redshift в качестве базы данных для событий, которые происходят в сервисах бэкенда и мобильных приложениях. Его выбрали потому, что на момент внедрения, по большому счёту, не было альтернатив, сравнимых по стоимости и удобству.

Однако всё изменилось после публичного релиза ClickHouse. Мы долго его изучали, сравнивали стоимость, прикидывали примерную архитектуру и вот, наконец, этим летом решились посмотреть, насколько он нам полезен. Из этой статьи вы узнаете о том, какую проблему нам помогал решить Redshift, и как мы перенесли это решение на ClickHouse.
Читать полностью »

Приглашаем 22 декабря на Data Ёлку - 1

Приглашаем 22 декабря присоединиться к команде Data Science-специалистов и вместе подвести итоги года. На встрече мы вместе подытожим, что нового было в разных областях Data Science в 2018-м, обсудим последние новости с NIPS/NeurIPS, ответим на самые актуальные вопросы от участников сообщества, а главное — наградим тех, чей вклад в сообщество ODS стал значимым за последний год.
Читать полностью »

Google News и Лев Толстой: визуализация векторных представлений слов с помощью t-SNE - 1

Каждый из нас воспринимает тексты по-своему, будь это новости в интернете, поэзия или классические романы. То же касается алгоритмов и методов машинного обучения, которые, как правило, воспринимают тексты в математической в форме, в виде многомерного векторного пространства.

Статья посвящена визуализации при помощи t-SNE рассчитанных Word2Vec многомерных векторных представлений слов. Визуализация позволит полнее понять принцип работы Word2Vec и то, как следует интерпретировать отношения между векторами слов перед дальнейшем использованием в нейросетях и других алгоритмах машинного обучения. В статье акцентируется внимание именно на визуализации, дальнейшее исследование и анализ данных не рассматриваются. В качестве источника данных мы задействуем статьи из Google News и классические произведения Л.Н. Толстого. Код будем писать на Python в Jupyter Notebook.
Читать полностью »

И снова привет!

В декабре у нас стартует обучение очередной группы «Data scientist», поэтому открытых уроков и прочих активностей становится всё больше. Например, буквально на днях прошёл вебинар под длинным названием «Feature Engineering на примере классического датасета Титаника». Его провёл Александр Сизов — опытный разработчик, кандидат технических наук, эксперт по Machine/Deep learning и участник различных коммерческих международных проектов, связанных с искусственным интеллектом и анализом данных.

Открытый урок занял около полутора часов. В ходе вебинара преподаватель рассказал про подбор признаков, преобразование исходных данных (кодирование, масштабирование), настройку параметров, обучение модели и много чего ещё. В процессе проведения урока участникам показывалась тетрадь Jupyter Notebook. Для работы использовались открытые данные с платформы Kaggle (классический датасет про «Титаник», с которого многие начинают знакомство с Data Science). Ниже предлагаем видео и транскрипт прошедшего мероприятия, а тут можно забрать презентацию и коды в юпитеровском ноутбуке.

Читать полностью »

В «Ростелекоме» мы используем Hadoop для хранения и обработки данных, загруженных из многочисленных источников с помощью java-приложений. Сейчас мы переехали на новую версию hadoop с Kerberos Authentication. При переезде столкнулись с рядом проблем, в том числе и с использованием YARN API. Работа Hadoop с Kerberos Authentication заслуживает отдельной статьи, а в этой мы поговорим об отладке Hadoop MapReduce.

Тестирование и отладка MapReduce - 1
Читать полностью »

Привет!

17 декабря (понедельник) мы устраиваем TECHDAY MAKE IT REAL – специально для тех, кто предпочитает красивым речам об инновациях их внедрение.

Techday Make IT Real — 17 декабря, Москва - 1

— На любой конференции вы можете услышать про миллион чужих фантазий о применении современных технологий. Вам расскажут о том, как они создали воздушные замки, о том, как они убивают в них гоблинов и троллей. Все это прекрасно, но это — сказки. Мы же попробуем вам рассказать о том, как это выглядит в действительности.

Кирилл Ермаков

Формально techday будет разделен на две части: основную программу и активности на тематических площадках.

Список спикеров, программа и ссылка на регистрацию — под катом. Участие бесплатное.
Читать полностью »

Всем привет!

Вторая часть перевода, который мы разместили пару недель назад, в рамках подготовки к старту второго потока курса «Data scientist». Впереди ещё один интересный материал и открытый урок.

А пока поехали дальше в дебри моделей.

Модель нейронного перевода

В то время как ядро sequence-to-sequence модели создается функциями из tensorflow/tensorflow/python/ops/seq2seq.py, остается еще пара трюков, использующихся в нашей модели перевода в models/tutorials/rnn/translate/seq2seq_model.py, о которых стоит упомянуть.

Модели Sequence-to-Sequence Ч.2 - 1Читать полностью »

Сегодня на тематических зарубежных сайтах о Big Data можно встретить упоминание такого относительно нового для экосистемы Hadoop инструмента как Apache NiFi. Это современный open source ETL-инструмент. Распределенная архитектура для быстрой параллельной загрузки и обработки данных, большое количество плагинов для источников и преобразований, версионирование конфигураций – это только часть его преимуществ. При всей своей мощи NiFi остается достаточно простым в использовании.

image

Мы в «Ростелекоме» стремимся развивать работу с Hadoop, так что уже попробовали и оценили преимущества Apache NiFi по сравнению с другими решениями. В этой статье я расскажу, чем нас привлек этот инструмент и как мы его используем.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js