Рубрика «big data» - 11

image
Источник фото
Карликовая многозубка, самое маленькое млекопитающее по массе. Внутри маленький целостный сложный мозг, который уже принципиально можно картировать

Короткий ответ — можно, но не полную и не очень точную. То есть мы ещё не можем скопировать её сознание, но приблизились к этому как никогда. Проживите ещё лет двадцать — и, возможно, ваш мозг тоже получится забэкапить.

Чтобы приблизиться к оцифровке сознания и такому экзотическому виду бессмертия, стоит сначала разобраться с живыми нейронными сетями. Их реверс-инжиниринг показывает нам, как вообще может быть устроен процесс мышления (вычислений) в хорошо оптимизированных системах.

60 лет назад, 13 сентября 1960 года, учёные собрали первый симпозиум из биологов и инженеров, чтобы они могли разобраться, в чём же разница между сложной машиной и организмом. И есть ли она вообще. Науку назвали бионикой, а целью обозначили применение методов биологических систем к прикладной инженерии и новым технологиям. Биосистемы рассматривались как высокоэффективные прототипы новой техники.

Военный нейроанатом Джек Стил стал одним из людей, заметно повлиявших на дальнейший прогресс в области технологий, в том числе в области ИИ, где развитие получили такие направления, как нейроморфная инженерия и биоинспирированные вычисления. Стил был медиком, разбирался в психиатрии, увлекался архитектурой, умел управлять самолётом и сам чинил свою технику, то есть был вполне неплохим прикладным инженером. Научная работа Стила стала прообразом сценария фильма «Киборг». Так что с некоторой натяжкой можно назвать его прадедушкой Терминатора. А где Терминатор, там и Скайнет, как известно.

Этот пост написан на основе материалов будущей книги нашего коллеги Сергея Маркова «Охота на электроовец: большая книга искусственного интеллекта».
Читать полностью »

Продолжаем наше исследование, посвященное ситуации в США со стрельбой полицейских и уровнем преступности среди представителей белой и черной (афроамериканской) рас. Напомню, что в первой части я рассказал о предпосылках исследования, его целях и принятых оговорках / допущениях; а во второй части была демонстрация анализа взаимосвязи между расовой принадлежностью, преступностью и гибелью от рук служб правопорядка.

Напомню также и промежуточные выводы, сделанные на основе статистических наблюдений (за период с 2000 по 2018 год):

Экосистема Big Data, а для определенности — Hadoop, достаточно большая, и включает в себя множество продуктов. Какие-то применяются чаще, какие-то реже. Но один из них в нашей команде мы выбрали для себя в качестве универсального инструмента «на все случаи жизни» — на нем пишутся как одноразовые скрипты, так и постоянно работающие приложения (в первую очередь — отчеты).

Этот инструмент — Spark Shell. Обычно такую штуку называют швейцарский нож, но лично я предпочитаю мультитулы Leatherman.
Читать полностью »

Заметки Дата Сайентиста: на что обратить внимание при выборе модели машинного обучения — персональный топ-10 - 1


Мы снова в эфире и продолжаем цикл заметок Дата Сайентиста и сегодня представляю мой абсолютно субъективный чек-лист по выбору модели машинного обучения.

Это топ-10 свойств задачи и просто пунктов (без порядка в них), с точки зрения которых я начинаю выбор модели и вообще моделирование задачи по анализу данных.

Совсем не обязательно, что у вас он будет таким же — здесь все субъективно, но делюсь опытом из жизни.
Читать полностью »

В первой части статьи я описал предпосылки для исследования, его цели, допущения, исходные данные и инструменты. Сейчас можно без дальнейших разглагольствований сказать гагаринское...

Поехали!

Импортируем библиотеки и определяем путь к директории со всеми файлами:

import pandas as pd, numpy as np

# путь к папке с исходными файлами
ROOT_FOLDER = r'c:_PROG_Projectsus_crimes'

Гибель от рук закона

Читать полностью »

image

Когда дело касается распознавания объектов, первые клики будут в сторону Google или Microsoft. Что если они сразятся между собой в распознавании автомобилей? Мы провели исследование, добавив в список игроков белорусский сервис SpotVision Car Detection. Кто победит?
Читать полностью »

Data Scientists узнают, что интересует людей и на что они тратят деньги

В ходе исследований различных аудиторий Data Scientists наблюдают как закономерные, так и удивительные факты, которые ярко характеризуют социум вокруг нас. В этой статье я расскажу о тех курьёзах и необычных случаях, которые заметила при выполнении задач, связанных с аудиторным анализом, исследованием интересов пользователей Интернета и покупательского поведения различных социальных групп. 

Какие социологические особенности удалось выяснить благодаря применению моделей машинного обучения? Что мы знаем о покупателях? 
 

Уроки волшебства для кота, дейтинг для беременных и астрология - 1

Источник
Читать полностью »

Заметки Дата Сайентиста: персональный обзор языков запросов к данным - 1


Рассказываю из личного опыта, что где и когда пригодилось. Обзорно и тезисно, чтобы понятно было, что и куда можно копать дальше — но тут у меня исключительно субъективный личный опыт, у вас, может быть, все совсем по-другому.

Почему важно знать и уметь обращаться с языками запросов? По своей сути в Data Science есть несколько важнейших этапов работы и самый первый и важнейший (без него уж точно ничего работать не будет!) — это получение или извлечение данных. Чаще всего данные в каком-то виде где-то сидят и их нужно оттуда «достать». 

Языки запросов как раз и позволяют эти самые данные извлечь! И сегодня я расскажу, о тех языках запросов, которые мне пригодились и расскажу-покажу, где и как именно — зачем оно нужно для изучения.

Всего будет три основных блока типов запросов к данным, которые мы разберем в данной статье:

  • «Стандартные» языки запросов — то, что обычно понимают, когда говорят о языке запросов, как, например, реляционная алгебра или SQL.
  • Скриптовые языки запросов: например, питоновские штучки pandas, numpy или shell scripting.
  • Языки запросов к графам знаний и графовым базам данных.

Все написанное здесь — это просто персональный опыт, что пригодилось, с описанием ситуаций и «зачем оно было нужно» — каждый может примерить, насколько подобные ситуации могут встретиться вам и попробовать подготовиться к ним заранее, разобравшись с этими языками до того, как придется их в (срочном порядке) применять на проекте или вообще попасть на проект, где они нужны.Читать полностью »

image

Привет! Наша команда занимается мониторингом станков и разных установок по всей стране. По сути, мы обеспечиваем возможность производителю не гонять лишний раз инженера, когда «ой, оно всё сломалось», а на деле надо нажать одну кнопку. Или когда сломалось не на оборудовании, а рядом.

Базовая проблема следующая. Вот вы производите установку для крекинга нефти, либо станок для машиностроения, либо какое-то другое устройство для завода. Как правило, продажа сама по себе крайне редко возможна: обычно это контракт на поставку и обслуживание. То есть вы гарантируете, что железяка будет работать лет 10 без перебоев, а за перебои отвечаете либо финансово, либо обеспечиваете жёсткие SLA, либо что-то подобное.

По факту это означает, что вам нужно регулярно отправлять инженера на объект. Как показывает наша практика, от 30 до 80 % выездов — лишние. Первый случай — можно было бы разобраться, что случилось, удалённо. Либо попросить оператора нажать пару кнопок — и всё заработает. Второй случай — «серые» схемы. Это когда инженер выезжает, ставит в регламент замену или сложные работы, а сам делит компенсацию пополам с кем-то с завода. Или просто наслаждается отдыхом с любовницей (реальный случай) и поэтому любит выезжать почаще. Завод не против.

Установка мониторинга требует модификации железа устройством передачи данных, самой передачи, какого-то озера данных для их накопления, разбора протоколов и среды обработки с возможностью всё посмотреть и сопоставить. Ну и с этим всем есть нюансы.
Читать полностью »

Заметки Дата Саентиста: маленькие утилиты — большая польза - 1


Чаще всего в работе датасаентиста мне приходится перегонять данные из одного представления в другое, агрегировать, приводить к одинаковой гранулярности и чистить данные, загружать, выгружать, анализировать, форматировать и присылать результаты (которые в общем-то тоже данные в каком-то виде). С данными всегда что-то не так и их нужно шустро гонять туда и обратно — больше всего в этом мне помогают классические юниксовые утилиты и небольшие, но гордые тулзы: вот о них-то мы сегодня и поговорим.

И сегодня будет подборка с примерами и ситуациями, в которых мне приходится их использовать. Все описанное здесь и ниже — это настоящий субъективный опыт и конечно же он у всех разный, но возможно кому-то он будет полезен.

Tools — learn the tools — все написанное субъективно и основано исключительно на личном опыте: помогло мне может быть поможет и вам.Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js