Здравствуйте, коллеги. Рассмотрим обычный онлайн-эксперимент в некоторой компании «Усы и когти». У неё есть веб-сайт, на котором есть красная кнопка в форме прямоугольника с закругленными краями. Если пользователь нажимает на эту кнопку, то где-то в мире мурлычет от радости один котенок. Задача компании — максимизация мурлыкания. Также есть отдел маркетинга, который усердно исследует формы кнопок и то, как они влияют на конверсию показов в клико-мурлыкания. Потратив почти весь бюджет компании на уникальные исследования, отдел маркетинга разделился на четыре противоборствующие группировоки. У каждой группировки есть своя гениальная идея того, как должна выглядеть кнопка. В целом никто не против формы кнопки, но красный цвет раздражает всех маркетологов, и в итоге было предложено четыре альтернативных варианта. На самом деле, даже не так важно, какие именно это варианты, нас интересует тот вариант, который максимизирует мурлыкания. Маркетинг предлагает провести A/B/n-тест, но мы не согласны: и так на эти сомнительные исследования спущено денег немерено. Попробуем осчастливить как можно больше котят и сэкономить на трафике. Для оптимизации трафика, пущенного на тесты, мы будем использовать шайку многоруких байесовских бандитов (bayesian multi-armed bandits). Вперед.
Рубрика «bayesian»
Байесовские многорукие бандиты против A-B тестов
2017-04-05 в 11:23, admin, рубрики: a/b testing, bandit, bayes, bayesian, bayesian reasoning, kittens, machine learning, multi-armed bandit, ods, open data science, python, sampling, testing, thompson, Блог компании Open Data Science, математика, машинное обучение, Тестирование веб-сервисовО линейной регрессии: байесовский подход к курсу рубля
2017-04-05 в 7:32, admin, рубрики: bayesian, data mining, jags, R, rjags, variable selection, анализ данных, Байес, временные ряды, всемирный заговор, курс, математика, машинное обучение, нефть, Программирование, регрессия, рубль, статистика, цены, эконометрика, метки: Временные ряды
Не секрет, что курс рубля напрямую зависит от стоимости нефти (и от кое-чего еще). Этот факт позволяет строить довольно интересные модели. В своей статье о линейной регрессии я коснулся некоторых вопросов, посвященных диагностике модели, а за кадром остался такой вопрос: есть ли более эффективная, но не слишком сложная альтернатива линейной регрессии? Традиционно используемый метод наименьших квадратов прост и понятен, но есть и другие подходы (не такие понятные).