0. Предисловие
Разбираем статью итальянских коллег 2014г. Gianluca Baio & Marta Blangiardo "Bayesian hierarchical model for the prediction of football results".
0. Предисловие
Разбираем статью итальянских коллег 2014г. Gianluca Baio & Marta Blangiardo "Bayesian hierarchical model for the prediction of football results".
Или: Как переход от публикации P-значений к публикации функций правдоподобия поможет справиться с кризисом воспроизводимости: личное мнение Элиезера Юдковского.
Комментарий переводчика: Юдковский, автор HPMOR, создатель Lesswrong и прочая и прочая, изложил свою позицию по поводу пользы байесовской статистики в естественных науках в форме диалога. Прямо классический такой диалог из античности или эпохи возрождения, с персонажами, излагающими идеи, обменом колкостями вперемешку с запутанными аргументами и неизбежно тупящим Симплицио. Диалог довольно длинный, минут на двадцать чтения, но по-моему, он того стоит.
Если вы ещё не знакомы с правилом Байеса, на сайте Arbital есть подробное введение.
Модератор: Добрый вечер. Сегодня в нашей студии: Учёный, практикующий специалист в области… химической психологии или чего-то типа того; его оппонент Байесовец, который намерен доказать, что кризис воспроизводимости в науке можно как-то преодолеть с помощью замены P-значений на что-то из Байесовской статистики…
Студент: Извините, как это пишется?
Модератор:… и, наконец, ничего не понимающий Студент справа от меня.
Читать полностью »
Глубинное обучение в последние годы стало ключевым направлением исследований в машинном обучении. Начавшись с архитектурных прорывов, позволявших эффективно обучать глубокие нейросети, оно стало распространяться на другие подобласти, предоставляя набор эффективных средств там, где для решения задачи требуется приближение некоторой сложной функции.
Многие современные исследовательские статьи активно используют байесовский формализм в сочетании с глубокими нейросетями, приходя к интересным результатам. Мы – исследовательская группа BayesGroup с помощью наших друзей из Сколтеха, а так же при поддержке Высшей Школы Экономики, Сбербанка, Яндекса, Лаборатории Касперского, JetBrains и nVidia – решили поделиться накопленным опытом и устроить летнюю школу по байесовским методам в глубинном обучении Deep|Bayes, где подробно рассказать, что такое байесовские методы, как их комбинировать с глубинным обучением и что из этого может получиться.
Отбор на школу оказался весьма сложным занятием – мы получили более 300 заявок от сильных кандидатов, но вместить смогли только 100 (приятно, что среди участников были не только жители Москвы и Петербурга, но и студенты из регионов, а так же русскоговорящие гости из-за границы). Пришлось отказать многим сильным кандидатам, поэтому для смягчения этого прискорбного факта мы решили сделать доступными максимальное количество материалов, которыми и хотим поделиться с читателями.