Рубрика «астрономия» - 51

Существует достаточно большое количество вариантов видеть ночью. Это или взять прибор ночного видения, или тепловизор, или ночной прицел с подсветкой, или, может быть, камеру с электронным умножением на EMCCD. К сожалению, не всегда все камеры и приборы оказываются под рукой одновременно, и их обычно не удаётся сравнить между собой.

К счастью, нам повезло, и у нас появилась такая возможность. Более того, повезло, что погода позволила воссоздать эталонные условия для проведения сравнительных испытаний. Луна отсутствовала, небо было чистое, и нужно было только выехать за город, подальше от искусственного освещения.

Итак, что же у нас было с собой:

1.1 ЭОП – электронно-оптический преобразователь третьего поколения. Лучший из всех приборов типа ЭОП, с которыми приходилось сталкиваться. Очень сложно создать условия, при которых он ничего не видит. Разрешение ЭОП 68лин/мм. Максимум спектральной чувствительности должен быть в районе 800нм. ЭОП состыкован с камерой VC249 на базе малошумящего сенсора. Разрешение камеры значительно выше разрешение ЭОП, поэтому камера не влияет на результат.

1.2 VS320 – камера ближнего ИК-диапазона (SWIR) с чувствительностью в диапазоне спектра от 0.9 до 1.8 мкм. Спектральная чувствительность практически плоская. Разрешение 320х256, размер фоточувствительного элемента 25х25мкм.

1.3 VC400 – «обычная» камера видимого диапазона на базе кремневой структуры. «Обычная» в кавычках, потому что это камера для проведения астронометрических наблюдений с обратной засветкой. Разрешение 2000х2000, размер фоточувствительного элемента более 10мкм. Максимум спектральной характеристики в районе 550нм.

Все камеры разработаны и произведены в России, но это не должно никого смущать, так как элементная база (за исключением ЭОП) вполне себе импортная.
Читать полностью »

НАСА разрабатывает проект «стрекозы» для обследования Титана - 1
«Срекоза» (Dragonfly) — это способный летать научно-исследовательский аппарат, использующий для передвижения особенности окружающей среды Титана, например, плотную атмосферу. С его помощью ученые надеются обследовать различные регионы этого планетоида, для того, чтобы больше узнать об особенностях строения Титана, характеристиках его атмосферы и поверхности

На днях агентство НАСА опубликовало информацию об идеях для своих новых миссий. Одна из них предусматривает создание летающего робота для обследования спутника Сатурна Титана, вторая — сбор образцов с ядра кометы. Идеи обеих миссий были отобраны из 12 предложенных в рамках New Frontiers проектов.

Что касается первой миссии, то робот, создаваемый в ее рамках, будет называться Dragonfly («стрекоза»). Это устройство планируется оснастить складывающимися винтами, которые позволят ему отрываться от поверхности Титана и быстро преодолевать по «воздуху» путь в несколько сотен километров для перемещения в новую локацию, которая заинтересовала ученых. Кроме того, робот будет оснащен специализированными датчиками по обнаружению органических веществ различных видов и другим научным оборудованием.
Читать полностью »

Спросите Итана: что происходит с сингулярностью при испарении чёрной дыры? - 1
Горизонт событий чёрной дыры — сферический, или сфероидальный участок, из которого ничего, даже свет, убежать не может. Но есть предсказание, что вне горизонта событий чёрная дыра испускает излучение.

Сложно представить, учитывая разнообразие форм, принимаемых материей во Вселенной, что миллионы лет в ней существовали только нейтральные атомы водорода и гелия. Возможно, примерно так же сложно представить, что когда-нибудь, через квадриллионы лет, погаснут все звёзды. Будут существовать только останки ныне такой живой Вселенной, включая и самые впечатляющие её объекты: чёрные дыры. Но и они не вечны. Наш читатель хочет узнать, как именно это произойдёт:

Что случится, когда чёрная дыра потеряет достаточное количество энергии из-за излучения Хокинга, и плотности её энергии уже не будет хватать для того, чтобы поддерживать сингулярность с горизонтом событий? Иначе говоря, что произойдёт, когда чёрная дыра перестанет быть чёрной дырой из-за излучения Хокинга?

Чтобы ответить на этот вопрос, важно понять, что на самом деле представляет собой чёрная дыра.
Читать полностью »

Введение

Данная статья подводит итоги проекта по созданию спутника “Маяк”, первого российского спутника, созданного руками любителей космонавтики и запущенного на орбиту 14 июля 2017 года с космодрома “Байконур”. Дана хронология развития проекта, перечень основных технических и организационных задач, список участников проекта на разных стадиях.

Так же в статье вот так отмечены решенные вопросы, а вот так — отмеченные ошибки, допущенные в ходе работ.

В тексте встречает местоимения “я” и “мы”. Я — это автор этого текста и руководитель проекта “Маяк”, Александр Шаенко, мы — это команда проекта “Маяк”.

Итак, начнем.

Читать полностью »

Астрономы обычно избегают «Зоны избегания». Когда одна из них не стала этого делать, она обнаружила гигантскую космическую структуру, способную объяснить слишком большую скорость нашей галактики

Скрытое сверхскопление может решить загадку Млечного Пути - 1
Изображение сверхскопления Парусов, выглядывающего из-за Зоны избегания Млечного Пути

Посмотрите на ночное небо с места, где есть хороший обзор, и вы увидите толстую полосу Млечного Пути, протянувшуюся через всё небо. Но эти звёзды и пыль, обрисовывающие диск нашей Галактики, не приветствуют астрономы, изучающие галактики, расположенные за нашей. Это похоже на толстую полосу запотевшего лобового стекла, на размытие, делающее неполным наше знание о Вселенной. Астрономы называют её Зоной избегания.

Рене Краан-Кортевег [Renée Kraan-Korteweg] всю свою карьеру пыталась открыть то, что лежит за этой зоной. Впервые она нашла признаки чего-то потрясающего на фоне, когда в 1980-х обнаружила намёки на потенциальное скопление объектов, видимое на старых фотопластинках. За последующие несколько десятилетий намёки на крупномасштабную структуру продолжали поступать.
Читать полностью »

«Корабль инопланетян» из другой звездной системы оказался покрытым органикой ледяным булыжником - 1

В ноябре этого года на Geektimes сообщалось о том, что в Солнечной системе впервые в истории был обнаружен межзвездный объект. Это уже само себе интересно, но космический скиталец привлек к себе внимание еще и благодаря своей форме. Он представляет собой сильно вытянутый эллипсоид с отношением длины к толщине 10:1. Как уже сообщалось, период вращения объекта составляет немногим более 7 часов.

При проверке спектра гостя Солнечной системы оказалось, что он мало чем отличается от обычного для кометного ядра спектра. Ну, конечно, если не учитывать того, что U1 (Оумуамуа) — вовсе не комета, а неясно что. Кроме прочих интересных вещей, обнаружилось, что яркость объекта переменная, причем альбедо разных участков поверхности мало отличается.
Читать полностью »

Технология машинного обучения от Google помогает НАСА открывать экзопланеты - 1

Несколько дней назад агентство НАСА объявило об интересных результатах партнерства с телекоммуникационным гигантом — корпорацией Google. Речь идет о долгосрочном сотрудничестве, цель которого — использование возможностей машинного обучения для обработки огромного количества данных, получаемых НАСА с орбитального телескопа «Кеплер». Одним из таких результатов можно назвать обнаружение восьмой по счету экзопленеты в системе Kepler-90.

Сама планета является самой мелкой в этой системе. Kepler-90 находится в 2,5 тысячах световых лет от Земли. Экзопланета, о которой идет речь, совершает оборот вокруг своей звезды за 14 дней. Насколько можно судить, она находится довольно близко от своего светила, так что вряд ли на ней есть вода, Kepler-90i по своим характеристикам больше похожа на Меркурий, чем на Землю.
Читать полностью »

Спросите Итана: может ли Вселенная всё-таки прийти к Большому сжатию? - 1
Для Большого отскока требуется фаза повторного схлопывания (Большое сжатие), за которой следует расширение (новый Большой взрыв)

Одним из крупнейших прорывов XX века стало определение того, насколько на самом деле наша Вселенная богатая, обширная и массивная. В объёме радиуса порядка 46 млрд световых лет содержится примерно два триллиона галактик. Наша наблюдаемая Вселенная позволяет нам воссоздать всю историю нашей космической истории, протянувшуюся назад вплоть до Большого взрыва и даже, вероятно, немножечко дальше. А что насчёт будущего? Что насчёт судьбы Вселенной? Определённая ли она? Именно это и хочет знать наш читатель:

Вы писали, что Вселенная расширяется с замедляющейся скоростью. Я думал, что Нобелевскую премию выдали за открытие того, что Вселенная расширяется с ускорением. Можете ли вы уточнить ведущие теории? Есть ли среди возможностей Большое сжатие?

Лучшее предсказание будущего поведения находится в прошлом. Но как люди, так и Вселенная иногда могут нас удивить.
Читать полностью »

Собственно, это вольный перевод вот этой статьи.

image

Посадочный модуль и «микро» ровер, которые Ispace разрабатывает для лунных миссий. В ходе первого раунда финансирования, завершившегося 13 декабря, компания получила более $90М. По расчетам Ispace этого должно быть достаточно для проведения двух демонстрационных миссий до конца 2020 г. Авторы: Ispace

NEW ORLEANS — японская компания, планирующая серию роботизированных миссий на Луну, объявила 13 декабря, что она собрала более 90 миллионов долларов в своём первом раунде финансирования, ставшем одним из крупнейших раундов серии A для любого вновь возникающего космического предприятия.

Токийская Ispace сообщила о завершении первого раунда финансирования в котором она получила $90,2М. Средства получены от консорциума японских фондов и компаний, и будут использованы для разработки двух миссий с запуска до конца 2020 года в рамках подготовки серии регулярной миссии с мягкой посадкой на Луну в последующие годы.
Читать полностью »

Спросите Итана: как далеко край Вселенной отстоит от самой далёкой галактики? - 1
Изучение самых далёких галактик может показать нам объекты, расположенные в миллиардах световых лет от нас, но даже с идеальной технологией пространственный промежуток между самой далёкой галактикой и Большим взрывом будет оставаться огромным

Вглядываясь во Вселенную, мы видим свет везде, на всех расстояниях, на которые только способны заглянуть наши телескопы. Но в какой-то момент мы наткнёмся на ограничения. Одно из них накладывается космической структурой, формирующейся во Вселенной: мы можем видеть только звёзды, галактики и прочее, только если они излучают свет. Без этого наши телескопы ничего не способны разглядеть. Другое ограничение, при использовании видов астрономии, не ограничивающихся светом — это ограничение того, какая часть Вселенной доступна для нас с момента Большого взрыва. Две эти величины могут не быть связанными друг с другом, и именно по этой теме нам задаёт вопрос наш читатель:

Почему красное смещение реликтового излучения находится в пределах 1000, хотя самое большое красное смещение любой галактики из тех, что мы видели, равно 11?

Сначала мы должны разобраться с тем, что происходит в нашей Вселенной с момента Большого взрыва.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js