Детектирование аномалий — интересная задача машинного обучения. Не существует какого-то определенного способа ее решения, так как каждый набор данных имеет свои особенности. Но в то же время есть несколько подходов, которые помогают добиться успеха. Я хочу рассказать про один из таких подходов — автоенкодеры.
Рубрика «anomaly detection»
Детектирование аномалий с помощью автоенкодеров на Python
2020-03-09 в 6:19, admin, рубрики: anomaly detection, autoencoder, machine learning, python, pytorch, sklearn, автоенкодер, автокодировщик, машинное обучение, ПрограммированиеЯ, РобоЛойер. Ищу аномалии в документах
2018-08-10 в 12:45, admin, рубрики: anomaly detection, doc2vec, machine learning, word2vec, Блог компании Digital Design, машинное обучениеПредставляете ли вы, сколько нормативных документов в час приходится просматривать корпоративному юристу и к каким последствиям может привести его невнимательность? Бедолага юрист должен вчитываться в каждый договор, тем более, если для него нет типового шаблона, что случается часто.
Глядя в уставшие глаза нашего корпоративного юриста, мы решили создать сервис, который будет находить проблемы в документах и сигналить о них задремавшему юристу. В результате мы создали решение с агрегацией знаний по некоторой базе договоров и подсказками юристам, на что следует обратить особое внимание. Конечно, не обошлось без магии. Математической магии под названием Anomaly Detection.
В основном, подходы Anomaly Detection применяются для анализа поведения разнообразного оборудования для выявления отказов, или в банковском секторе для определения фрода. А мы попробовали применить эти алгоритмы для анализа юридических документов. Следуйте под кат, чтобы узнать, как мы это делали.
Поиск звуковых аномалий
2016-11-22 в 5:00, admin, рубрики: anomaly detection, azure machine learning, azure ml, cnn, CNTK, keras, machine learning, numenta, python, RNN, scikit, scikit-learn, TensorFlow, машинное обучениеПопробуем решить задачу поиска аномалий в звуке.
Примеры аномалий звука:
- Неисправности в работе двигателя.
- Изменения в погоде: дождь, град, ветер.
- Аномалии работа сердца, желудка, суставов.
- Необычный трафик на дороге.
- Неисправности колесных пар у поезда.
- Неисправности при посадке и взлете самолета.
- Аномалии движения жидкости в трубе, в канале.
- Аномалии движения воздуха в системах кондиционирования, на крыле самолета.
- Неисправности автомобиля, велосипеда.
- Неисправности станка, оборудования.
- Расстроенный музыкальный инструмент.
- Неправильно взятые ноты песни.
- Эхолокация кораблей и подводных лодок.
Читать полностью »
Продиагностируем регрессионные PlayBoy модели?
2015-12-24 в 0:35, admin, рубрики: anomaly detection, data mining, outlier detection, R, regression tests, Алгоритмы, визуализация данных На пост натолкнул регрессионный анализ PlayBoy моделей бегло на MatLab здесь и продолжение использования этого датасета для анализа выбросов методом опорных векторов на питоне
здесь.
Собственно цель поста — провести беглую диагностику модели регрессионного анализа используя в языке R пакет CAR созданный Джонном Фоксом и сотоварищами а так же попробуем найти те же выбросы методами регрессии (насколько возможно применять формулировку «выброс» к таким объектам исследований).
Читать полностью »
Необычные модели Playboy, или про обнаружение выбросов в данных c помощью Scikit-learn
2015-02-23 в 0:15, admin, рубрики: anomaly detection, data mining, machine learning, outlier detection, pandas, PCA, python, scikit-learn, unsupervised learning, Алгоритмы Мотивированный статьей пользователя BubaVV про предсказание веса модели Playboy по ее формам и росту, автор решил углубиться if you now what I mean в эту будоражащую кровь тему исследования и в тех же данных найти выбросы, то есть особо сисястые модели, выделяющиеся на фоне других своими формами, ростом или весом. А на фоне этой разминки чувства юмора заодно немного рассказать начинающим исследователям данных про обнаружение выбросов (outlier detection) и аномалий (anomaly detection) в данных с помощью реализации одноклассовой машины опорных векторов (One-class Support Vector Machine) в библиотеке Scikit-learn, написанной на языке Python.