Рубрика «анализ данных» - 8

Привет!

В сентябре этого (2019) года прошли выборы Губернатора Санкт-Петербурга. Все данные о голосовании находятся в открытом доступе на сайте избирательной комиссии, мы не будем ничего ломать, а просто визуализируем информацию с этого сайта www.st-petersburg.vybory.izbirkom.ru в нужном для нас виде, проведем совсем несложный анализ и определим некоторые «волшебные» закономерности.

Обычно для подобных задач я использую Google Colab. Это сервис, который позволяет запускать Jupyter Notebook'и, имея доступ к GPU (NVidia Tesla K80) бесплатно, это заметно ускорит пирсинг данных и их дальнейшую обработку. Мне понадобились некоторые подготовительные работы перед импортом.

%%time 
!apt update
!apt upgrade
!apt install gdal-bin python-gdal python3-gdal 
# Install rtree - Geopandas requirment
!apt install python3-rtree 
# Install Geopandas
!pip install git+git://github.com/geopandas/geopandas.git
# Install descartes - Geopandas requirment
!pip install descartes

Далее импорты.

import requests 
from bs4 import BeautifulSoup 
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import geopandas as gpd
import xlrd

Описание используемых библиотек

  • requests — модуль для запроса на подключение к сайту

  • BeautifulSoup — модуль для парсинга html и xml документов; позволяет получить доступ напрямую к содержимому любых тегов в html

  • numpy — математический модуль с базовым и необходимым набором математических функций

  • pandas — библиотека для анализа данных

  • matplotlib.pyplot — модуль-набор методов построения

  • geopandas — модуль для построения карты выборов

  • xlrd — модуль для чтения табличных файлов

Настал момент собирать сами данные, парсим. Избирком позаботился о нашем времени и предоставил отчетность в таблицах, это удобно.
Читать полностью »

Disclaimer. Специалист по Big Data, Артур Хачуян, рассказал, как соцсети могут читать наши сообщения, как наш телефон нас подслушивает, и кому все это нужно. Эта статья — расшифровка большого интервью. Есть люди, которые экономят время и любят текст, есть те, кто не может на работе или в дороге смотреть видео, но с радостью читает Хабр, есть слабослышащие, для которых звуковая дорожка недоступна или сложна для восприятия. Мы решили для всех них и вас расшифровать отличный контент. Кто всё же предпочитает видео — ссылка в конце.

Большое интервью про Big Data: зачем за нами следят в соцсетях и кто продает наши данные? - 1

Каждый день мы что-то пишем, разыскиваем и выкладываем в интернете, и каждый день кто-то следит за нами по ту сторону экрана. Специальные программы сканируют фото, лайки и тексты, чтобы продать наши данные рекламным компаниям или полиции. Можно назвать это паранойей или научной фантастикой, но телефон, круг общения, переписка или ориентация — больше не секрет.Читать полностью »

Это и последующие руководства проведут вас через процесс создания решения на основе проекта Discovery.js. Наша цель — создать инспектор NPM-зависимостей, то есть интерфейс для исследования структуры node_modules.

Руководство по Discovery.js: быстрый старт - 1

Примечание: Discovery.js находится на ранней стадии разработки, поэтому со временем что-то будет упрощаться и становиться полезнее. Если у вас есть идеи, как можно что-то улучшить, напишите нам.

Аннотация

Ниже вы найдёте обзор ключевых концепций Discovery.js. Изучить весь код руководства можно в репозитории на GitHub, или можете попробовать как это работает онлайн.

Читать полностью »

Те, кто работает с данными, отлично знают, что не в нейросетке счастье — а в том, как правильно обработать данные. Но чтобы их обработать, необходимо сначала проанализировать корреляции, выбрать нужные данные, выкинуть ненужные и так далее. Для подобных целей часто используется визуализация с помощью библиотеки matplotlib.
50 оттенков matplotlib — The Master Plots (с полным кодом на Python) - 1
Встретимся «внутри»!
Читать полностью »

Здравствуйте, дорогие друзья. Вот, наконец-то, и добрался я до написания второй статьи, посвященной Maltego. Кто не читал первую – обязательно прочитайте вот тут. В ней я писал, что же такое Maltego в целом, а в этой статье я расскажу, с чем его едят. Картинок будет очень много.

Данная статья не совсем туториал по работе. Я, конечно, постараюсь показать максимум неочевидных вещей, с которыми столкнулся в процессе работы по первости, но лучший способ познать какой-либо фреймворк – это просто начать им пользоваться и нарабатывать опыт.Читать полностью »

Серия «Белый шум рисует черный квадрат»

История цикла этих публикаций начинается с того, что в книге Г.Секей «Парадоксы в теории вероятностей и математической статистике» (стр.43), было обнаружено следующее утверждение:

Треугольник Паскаля vs цепочек типа «000…-111…» в бинарных рядах и нейронных сетях - 1
Рис. 1.

По анализу комментарий к первым публикациям (часть 1, часть 2) и последующими рассуждениями созрела идея представить эту теорему в более наглядном виде.

Большинству из участников сообщества знаком треугольник Паскаля, как следствие биноминального распределения вероятностей и многие сопутствующие законы. Для понимания механизма образования треугольника Паскаля развернем его детальнее, с развертыванием потоков его образования. В треугольнике Паскаля узлы формируются по соотношению 0 и 1, рисунок ниже.

Треугольник Паскаля vs цепочек типа «000…-111…» в бинарных рядах и нейронных сетях - 2
Рис. 2.

Для понимания теоремы Эрдёша-Реньи составим аналогичную модель, но узлы будут формироваться из значений, в которых присутствуют наибольшие цепочки, состоящие последовательно из одинаковых значений. Кластеризации будет проводиться по следующему правилу: цепочки 01/10, к кластеру «1»; цепочки 00/11, к кластеру «2»; цепочки 000/111, к кластеру «3» и т.д. При этом разобьём пирамиду на две симметричные составляющие рисунок 3.

Треугольник Паскаля vs цепочек типа «000…-111…» в бинарных рядах и нейронных сетях - 3
Рис. 3.

Первое что бросается в глаза это то, что все перемещения происходят из более низкого кластера в более высокий и наоборот быть не может. Это естественно, так как если цепочка размера j сложилась, то она уже не может исчезнуть.
Читать полностью »

Хабр, привет. Представляю вам главную help-ссылку для работы с данными. Материал в Гугл-доке подойдет как профессионалам, так и тем, кто только учится работать с данными. Пользуйтесь и прокачивайте скиллы сами + делитесь с коллегами.

Дальнейшее описание поста — это содержание help-ссылки. Поэтому, можете сразу ознакомиться с документом. Либо начать с её содержания, которую прикрепляю ниже.

Конечно, весь список книг/сервисов/видео и лекций в файле неполный. Поэтому предлагаю сделать этот пост ценнейшим — добавляйте в комментарии свои самые полезные ссылки, самые крутые из них я добавлю к себе в файл.

imageЧитать полностью »

Решил поделиться, да бы и самому не забывать, как можно использовать простые статистические инструменты для анализа данных. В качестве примера использовался анонимный опрос относительно зарплат, стажа и позиций украинских программистов за 2014 и 2019 год. (1)

Этапы анализа

  • Препроцессинг данных и предварительный анализ (кому интересно код тут)
  • Графическое представление данных. Функция плотности распределения.
  • Формулируем нулевую гипотезу (H0) (2)
  • Выбираем метрику для анализа
  • Используем метод bootstraping для формирования нового массива данных
  • Рассчитываем p-value (3) для подтверждения или опровержения гипотезы

Препроцессинг данных

После некоторых манипуляций (код тут), приводим данные в следующий вид:

# Строка здесь это отдельный результат опроса, колонки переменные.

display(data_14_1.head(), data_19_1.head())
print('Всего опрошеных програмистов: n 
      {} чел. в 14 году и {} в 19 году'.format(len(data_14_1), len(data_19_1)))

Расчет нулевой гипотезы, на примере анализа зарплат украинских программистов - 1
Читать полностью »

В первой публикации рассказывалось о том, что есть подзабытая теорема Эрдёша-Реньи, из которой следует, что в случайном ряде, длины N, с вероятностью близкой к 1 существует подряд из одинаковых значений длиной log_2{N}. Указанное свойство случайной величины можно использовать для ответа на вопрос: «После обработки больших данных, подчиняется ли остаточный ряд закону случайных чисел или нет?»

Ответ на такой вопрос определялся не на основании тестов соответствия нормальности распределения, а на основании свойств самого остаточного ряда.
Читать полностью »

image

Всемирная паутина — это океан данных. Здесь можно посмотреть практически любую интересующую Вас информацию. Однако, "вытащить" эту информацию из интернета уже сложнее. Есть несколько способов получить данные и web-scraping один из них. Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js