Рубрика «анализ данных» - 28

Нескучные выходные или «тачка на прокачку» - 1Некоторое время назад я сказал: "«Тюнить» авто лично мне как-то не интересно...", но «никогда не говори „никогда“». Звезды встали в таком порядке, что пришлось экстренно сменить машину Peugeot 307sw на Mazda5.

Машина ездит, все хорошо, но некоторые «плюшки», которые были в прежней машине штатно, почему-то отсутствовали в текущей.

Одна из таких полезных вещей — парктроник. Установка парктроника не является проблемой, но вот как-то «неродной» дисплей парктроника меня в салоне не устраивал. Внутренний перфекционист был жутко против «чужеродного тела».
Читать полностью »

Одна из базовых задач анализа данных — поиск взаимосвязи двух величин. Здесь я хочу показать пример поиска связи между ценой нефти и курсом рубля.

image

Во-первых надо определить, имеет ли вообще задача смысл. Почему нефть и рубль должны/могут быть взаимосвязаны? Вкратце, модель такая: экспортёры продают нефть за доллары, а затем продают доллары, чтобы получить рубли для расчётов внутри страны. Механизм крайне упрощён, надо учитывать объёмы добычи-продажи, что эскортируют не только нефть, не всегда экспортёры продают доллары, на курс валют влияет ЦБ интервенциями и т.д. И тем не менее, будем считать, что модель более-менее рабочая, то есть, что существуют фундаментальные причины для взаимосвязи цены нефти и курса рубля.
Читать полностью »

Говорят, что нелинейная аппроксимация — это искусство, но и с обычной линейной дело, бывает, обстоит не просто.

image

Многие, наверно, помнят, что самый простой и довольно точный метод построения прямых МНК — это «прозрачной линейкой на глазок». Раньше, когда считали на калькуляторах, этот метод позволял экономить многие часы монотонных вычислений, но сейчас для заведомо линейных процессов это уже не актуально, аппроксимацию умеет мгновенно считать и рисовать даже Excel.

Однако при решении реальных задач часто приходится иметь дело с процессами, у которых модель неизвестна. В таких случаях бывает разумно строить кусочно-линейные аппроксимации. И вот тут, когда точных критериев построения просто не существует — метод «прозрачной линейки», основанный на «искусстве аппроксимации» (по простому — чуйке), опять становится актуальным.
Читать полностью »

Привет!

image

В прошлый раз мы познакомились с инструментом Apache Spark, который в последнее время становится чуть ли не самым популярным средством для обработки больших данных и в частности, Large Scale Machine Learning. Сегодня мы рассмотрим подробнее библиотеку MlLib, а именно — покажем, как решать задачи машинного обучения — классификации, регресии, кластеризации, а также коллаборативной фильтрации. Кроме этого покажем, как можно исследовать признаки с целью отбора и выделения новых (т.н. Feature Engineering, о котором мы говорили ранее, причем не один раз).
Читать полностью »

Статистика вокруг нас

Статистика и анализ данных пронизывают практически любую современную область знаний. Все сложнее становится провести границу между современной биологией, математикой и информатикой. Экономические исследования и регрессионный анализ уже практически неотделимы друг от друга. Один из известных методов проверки распределения на нормальность — критерий Колмогорова-Смирнова. А вы знали, что именно Колмогоров внес огромный вклад в развитие математической лингвистики?

Еще будучи студентом психологического факультета СПбГУ я заинтересовался когнитивной психологией. Кстати, Иммануил Кант не считал психологию наукой, так как не видел возможности применять в ней математические методы. Мои текущие исследования посвящены моделированию психических процессов, и я надеюсь, что такие направления в современной когнитивной психологии, как вычислительные и коннективисткие модели, смягчили бы его отношение!
Читать полностью »

Если вы когда-нибудь читали раздел помощь на Хабре, то наверняка видели там прелюбопытнейшую строчку:

Допустим, вы написали публикацию с рейтингом +100 — это добавило к вашему персональному рейтингу величину Х. Через несколько десятков дней этот самый Х вычтется, тем самым вернув вас на прежнее место.

то наверняка задавались вопросом, что это за Х и с какого он района чему он равен?

Сегодня мы ответим на этот вопрос.

Расшифровываем формулу Хабра-рейтинга или восстановление функциональных зависимостей по эмпирическим данным - 1
(измеряем Хабра-рейтинг в попугаях)

Структура статьи:

  1. Аналитический вывод
  2. Регрессия
  3. Исключения
  4. Устойчивая регрессия
  5. Скрипт и данные
  6. Почему скрывать функцию бесполезно
  7. Что с этим можно сделать?
  8. Интерпретация формулы

Читать полностью »

Данная статья возникла в результате переработки и перевода информации на русский язык, взятой из двух источников:

  • из статьи «Tidy Data»
  • из соответствующего swirl урока по tidyr package

Для профессионалов в области анализа данных это, возможно, выглядит как давно выученная таблица умножения — вряд ли они найдут здесь что-то новое. А тех, кто как и я только знакомится с данной областью и возможностями языка R, приглашаю продолжить чтение.
Читать полностью »

Доброго времени суток, уважаемыее! Сегодня я хотел бы поговорить о том, как не имея особого опыта в машинном обучении, можно попробовать свои силы в соревнованиях, проводимых Kaggle.

image

Как вам уже, наверное, известно, Kaggle – это платформа для исследователей разных уровней, где они могут опробовать свои модели анализа данных на серьезных и актуальных задачах. Суть такого ресурса – не только в возможности получить неплохой денежный приз в случае, если именно ваша модель окажется лучшей, но и в том (а, это, пожалуй, гораздо важнее), чтобы набраться опыта и стать специалистом в области анализа данных и машинного обучения. Ведь самый важный вопрос, зачастую стоящий перед такого рода специалистами – где найти реальные задачи? Здесь их достаточно.

Мы попробуем поучаствовать в обучающем соревновании, не предусматривающем каких-либо поощрений, кроме опыта.
Читать полностью »

Скорее всего, если вы зашли на Хабр и читаете эту статью, то хоть раз в жизни да слышали про MOOC-курсы.

Но если все же не слышали, то MOOC (по-русски принято произносить «мук») означает «Massive Open Online Course» — массовый открытый онлайн-курс. Это настоящий феномен в образовании XXI века. Газета «New York Times» назвала даже 2012 год «годом MOOC» в связи с появлением на рынке дистанционного образования 3-х «китов» — Coursera, Udacity и EdX. MOOC-ам посвящено множество статей, кто-то видит в них будущее образования, кто-то, наоборот, угрозу. Пытаются также предсказать «традиционную» и «дистанционную» составляющии обучения будущего.

Обзор некоторых MOOC Coursera по компьютерным наукам - 1 Обзор некоторых MOOC Coursera по компьютерным наукам - 2 Обзор некоторых MOOC Coursera по компьютерным наукам - 3
Обзор некоторых MOOC Coursera по компьютерным наукам - 4 Обзор некоторых MOOC Coursera по компьютерным наукам - 5 Обзор некоторых MOOC Coursera по компьютерным наукам - 6

Однако в этой статье я не буду обсуждать перспективы развития дистанционного образования, а расскажу про свой опыт знакомства с курсами на платформе Coursera. Эти курсы будут полезны студентам, изучающим прикладную математику и информатику, в особенности анализ данных. Многое из того, что мне дали эти курсы, как я потом понял — это знания, которыми должен обладать любой уважающий себя исследователь данных (так я предпочитаю переводить профессию Data Scientist).
Читать полностью »

Анализ Вконтакте на примере книжных предпочтений участников культурных сообществ - 1
Рис.  3. – Книги каких авторов из рейтинга топ100 читают пользователи Вконтакте

Для всех диаграмм в статье есть интерактивные визуализации: graphgrail.com/gg-client/vk_books.html
К 2014 году потенциал традиционных подходов к развитию аналитики социальных процессов оказался исчерпан в силу нескольких причин, главная из которых – неспособность созданных в рамках данных подходов решений адаптироваться к изменившимся условиям формирования общественных законов. Речь идет об их недостаточной динамичности и неприспособленности для обработки данных, поступающих в больших объемах в режиме времени, близком к реальному. Но самый серьезный удар по классической аналитике нанес взрывной рост объемов неструктурированных данных. [1]
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js