Рубрика «анализ данных» - 18

Представьте: вы открываете приложение, чтобы в очередной раз заказать такси в часто посещаемое вами место, и, конечно, в 2017 году вы ожидаете, что все, что нужно сделать – сказать приложению «Вызывай», и такси за вами тут же выедет. А куда вы хотели ехать, через сколько минут и на какой машине — все это приложение узнает благодаря истории заказов и машинному обучению. В общем-то все, как в шутках про идеальный интерфейс с единственной кнопкой «сделать хорошо», лучше которого только экран с надписью «все уже хорошо». Звучит здорово, но как же приблизить эту реальность?

Как мы обучали приложение Яндекс.Такси предсказывать пункт назначения - 1

На днях мы выпустили новое приложение Яндекс.Такси для iOS. В обновленном интерфейсе один из акцентов сделан на выборе конечной точки маршрута («точки Б»). Но новая версия – это не просто новый UI. К запуску обновления мы существенно переработали технологию прогнозирования пункта назначения, заменив старые эвристики на обученный на исторических данных классификатор.

Как вы понимаете, кнопки «сделать хорошо» в машинном обучении тоже нет, поэтому простая на первый взгляд задача вылилась в довольно захватывающий кейс, в результате которого, мы надеемся, у нас получилось немного облегчить жизнь пользователей. Сейчас мы продолжаем внимательно следить за работой нового алгоритма и еще будем его менять, чтобы качество прогноза было стабильнее. Эта же технология очень скоро будет работать и в приложении для Android, хотя обновление его интерфейса произойдет немного позже. На полную мощность мы запустимся в ближайшие несколько недель, но под катом уже готовы рассказать о том, что же происходит внутри.

Читать полностью »

«Сила машинного обучения окружает нас, методы её окружают нас и связывают. Сила вокруг меня, везде, между мной, тобой, решающим деревом, лассо, гребнем и вектором опорным»

Так бы, наверное, мне сказал Йода если бы он учил меня пути Data Science.

К сожалению, пока среди моих знакомых зеленокожие морщинистые личности не наблюдаются, поэтому просто продолжим вместе с вами наш совместный путь обучения науке о данных от уровня абсолютного новика до … настоящего джедая того, что в итоге получиться.

В прошлых двух статьях мы решали задачу классификации источников света по их спектру (на Python и C# соответственно). В этот раз попробуем решить задачу классификации светильников по их кривой силе света (по тому пятну которым они светят на пол).

Если вы уже постигли путь силы, то можно сразу скачать dataset на Github и поиграться с этой задачей самостоятельно. А вот всех, как и я новичков прошу подкат.

Благо задачка в этот раз совсем несложная и много времени не займет.
«Используй Силу машинного обучения, Люк!» или автоматическая классификация светильников по КСС - 1
Читать полностью »

Логи как часть продукта. Как GrayLog повлиял на качество - 1

Опыт использования GrayLog в наших проектах и как это повлияло на качество продуктов.

Читать полностью »

image

Привет! Надеемся, этим летом не смотря на плохую погоду Вам удалось отдохнуть. Близится осень — самое время поучиться. С учетом предыдущих курсов — мы сильно обновили нашу программу — добавили множество практических занятий, больше говорим про практические кейсы. В этом посте хотелось бы подробно рассказать про все нововведения. Для тех, у кого мало времени:

  • Снизилась цена
  • 8 дополнительных практических семинаров
  • Дополнительные занятия про бизнес
  • Занятия по Deep Learning
  • Доступно удаленное обучение
  • Плюс 2 занятия в Вводном курсе

Читать полностью »

Ранее в моей прошлой статье, посвящённой обучению Data Science с нуля, я обещал записаться на специализацию «Машинное обучение и анализ данных», на Coursera и поделится моими впечатлениями о доступности этих знаний для практически абсолютного новичка в области науки о данных. Сказано – сделано! Хотя безусловно, на Хабре уже есть упоминания об этой и аналогичных специализациях, но думаю мои «пять копеек» не помешают.

Цитата из известного фильма в названии статьи и картинка, взяты не случайно, местами мне кажется, что эта специализация доставляла мне почти физическую боль, и было колоссальное желание все бросить, но интерес в итоге взял верх. Поэтому если вам интересно как я с минимально возможными финансовыми затратами прошел эту серию курсов — милости прошу под кат.

«Паровозик, который смог!» или «Специализация Машинное обучение и анализ данных», глазами новичка в Data Science - 1

Читать полностью »

Данные: красивые и ужасные - 1

Данные повсюду. И это прекрасно. Они меняют нашу жизнь, заново изобретают сторителлинг и оказывают влияние практически на все отрасли — бизнес, искусство, развлечения, музыку, технологии.
Вот некоторые яркие примеры…

Информационная журналистика

Данные: красивые и ужасные - 2

Совершенно ужасающая инфографика. Проект, который называется «С глаз долой, из сердца вон», — это хронология ударов беспилотных дронов в Пакистане с июля 2004 года по декабрь 2013 года.

С 2004 года США практиковали новый вид подпольной военной операции. Использование беспилотных летательных аппаратов для уничтожения вражеских целей казалось привлекательным, так как устраняло риск потери американских военных и политически было намного легче осуществимо. Показатель эффективности оказался крайне низок, а потери среди взрослого и детского гражданского населения очень высоки. Весь мир мог бы остаться в неведении о том, что на самом деле происходит, и, как говорится, с глаз долой, из сердца вон. Этот проект помогает осветить тему беспилотных летательных аппаратов, не говоря за или против. Изучив данные, вы можете самим решить, сможете ли вы поддерживать подобное использование беспилотных летательных аппаратов или нет.
Читать полностью »

Социальные сети — не только таймкиллер и источник новостей, но и поле для разнообразных исследований. О том, что ученые и студенты Университета ИТМО научились узнавать по нашим постам в Facebook и Instagram, расскажем ниже.

«Познай самого себя»: social media mining-проекты в Университете ИТМО - 1Читать полностью »

Со стороны процесс лидогенерации обманчиво прост: сбор трафика, фильтрация трафика, и конвертация пользователей, пришедших на сайт, в желаемый объем целевых лидов. Но еще до того момента, как с сайта заказчика начали приходить первые заявки, запускается технологический процесс, который мы подробно разберем в этом материале.

image

Первые шаги

Предварительный этап включает в себя оценку будущего проекта поставщиком услуг по лидогенерации, сбор информации и тестовые работы.

Рентабельность запуска проекта можно определить на основании полученных данных в течение одного рабочего дня.
Читать полностью »

Сейчас проходит Data Science Game — международное студенческое соревнование по анализу данных. Ребята из МГУ выиграли отборочный этап, а затем рассказали о своём решении на одной из наших тренировок по машинному обучению.

Под катом — расшифровка и большинство слайдов.

Читать полностью »

Криптовалюты — движущая сила новой золотой лихорадки. Автор предлагает использовать анализ данных для лучшего понимания этого развивающегося рынка.

В последнее время возникает ощущение, будто деньги растут на деревьях.

image

Объемы биржевой торговли достигают миллионов долларов, а рыночная капитализация — миллиардов. Впору говорить о золотой лихорадке, подогреваемой появлением все большего количества новых криптовалют.

Мы живем в эпоху цифровых валют. Появившись менее 10 лет тому назад, концепция криптовалют уже сегодня получила широкое распространение. Несмотря на столь малый срок, на рынке уже существует более тысячи разных криптовалют, а ICO происходят чуть ли не каждый день.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js