Рубрика «anaconda»

В конце прошлого года, я написал статью, о том как был заинтригован возможностью распознавания объектов на изображениях с помощью нейронных сетей. В той статье мы с помощью PyTorch классифицировали на видео либо ягоду малину, либо ардуино-подобный контроллер. И не смотря на то, что PyTorch мне понравился, обратился я к нему потому, что не смог с наскока разобраться с TensorFlow. Но я пообещал, что ещё вернусь к вопросу распознавания объектов на видео. Кажется пришло время сдержать обещание.

В данной статье мы попробуем на своей локальной машине дообучить уже готовую модель в Tensorflow 1.13 и Object Detection API на нашем собственном наборе изображений, а потом используем её для распознавания ягод и контроллеров, в видеопотоке веб-камеры с помощью OpenCV.

Хотите к лету улучшить навык распознавания ягод? Тогда милости прошу под кат.

«Вы уж простите, обознался...» или распознаем малину и контроллеры с помощью Tensorflow Object Detection API - 1
Читать полностью »

Работа с Anaconda на примере поиска корреляции курсов криптовалют - 1

Цель этой статьи — предоставить легкое введение в анализ данных с использованием Anaconda. Мы пройдем через написание простого скрипта Python для извлечения, анализа и визуализации данных по различным криптовалютам.
Читать полностью »

— Eh bien, mon prince. Gênes et Lucques ne sont plus que des apanages, des поместья, de la famille Buonaparte. Non, je vous préviens que si vous ne me dites pas que nous avons la guerre, si vous vous permettez encore de pallier toutes les infamies, toutes les atrocités de cet Antichrist (ma parole, j'y crois) — je ne vous connais plus, vous n'êtes plus mon ami, vous n'êtes plus мой верный раб, comme vous dites 1. Ну, здравствуйте, здравствуйте. Je vois que je vous fais peur 2, садитесь и рассказывайте.

ТОМ ПЕРВЫЙ

ЧАСТЬ ПЕРВАЯ. Анна Каренина

Недавно на хабре наткнулся на эту статью https://habrahabr.ru/post/342738/. И захотелось написать про word embeddings, python, gensim и word2vec. В этой части я постараюсь рассказать о обучении базовой модели w2v.

Итак, приступаем.

  • Качаем anaconda. Устанавливаем.
  • Еще нам пригодится C/C++ tools от visual studio.
  • Теперь устанавливаем gensim. Именно для него нам и нужен c++.
  • Устанавливаем nltk.
  • При установке не забудьте качать библиотеки для Anaconda, а не для стандартного интерпретатора. Иначе все кончится крахом.
  • Качаем Анну Каренину в TXT.
  • Советую открыть файл и вырезать оттуда рекламу и заголовки. Потом сохранить в формате utf-8.
  • Можно приступать к работе.

Читать полностью »

Решение тяжёлых задач машинного обучения на стационарных компьютерах дело неблагодарное и малоприятное. Представьте, что вы на домашнем ноутбуке делаете ансамбль из N нейронных сетей для изучения лесов Амазонки на ноутбуке. Сомнительное удовольствие, тем более, что сейчас есть прекрасный выбор облачных сервисов для этих целей — Amazon Web Services, Google Cloud Platform, Microsoft Azure и прочие. Некоторые даже относительно бесплатны и предоставляют видеокарты.

image

Мы будем настраивать VM на Google Cloud Platform с нуля. Бонусом — стартовые 300$ на год на один gmail аккаунт. Поехали.

  1. Создание и настройка Virtual Machine Instances
  2. Настройка сетевых параметров
  3. Установка Anaconda и дополнительных пакетов
  4. Настройка Jupyter Notebook
  5. Настройка File TransferЧитать полностью »

https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js