Довольно часто нас спрашивают, почему мы не устраиваем соревнований дата-сайентистов. Дело в том, что по опыту мы знаем: решения в них совсем не применимы к prod. Да и нанимать тех, кто окажется на ведущих местах, не всегда имеет смысл.

Такие соревнования часто выигрывают с помощью так называемого китайского стекинга, когда комбинаторным способом берут все возможные алгоритмы и значения гиперпараметров, и полученные модели в несколько уровней используют сигнал друг от друга. Обычные спутники этих решений — сложность, нестабильность, трудность при отладке и поддержке, очень большая ресурсоёмкость при обучении и прогнозировании, необходимость внимательного надзора человека в каждом цикле повторного обучения моделей. Смысл делать это есть только на соревнованиях — ради десятитысячных в локальных метриках и позиций в турнирной таблице.
Читать полностью »