Рубрика «Алгоритмы» - 65

Алгоритм коллапса волновой функции (Wavefunction Collapse Algorithm) учит компьютер импровизировать. На входе он получает архетипичные данные и создаёт процедурно генерируемые данные, похожие на исходные.

Доступное объяснение алгоритма коллапса волновой функции - 1

(Источник)

Чаще всего он используется для создания изображений, но может также строить города, скейтпарки и писать ужасные стихи.

Доступное объяснение алгоритма коллапса волновой функции - 2

(Источник)

Коллапс волновой функции — это очень независимо мыслящий алгоритм, не требующий практически никакой помощи или инструкций извне. Вам нужен только пример стиля, которого нужно достичь, а всё остальное он сделает сам. Несмотря на свою самодостаточность, он на удивление прост. Он не использует никаких нейронных сетей, случайных лесов или чего-то другого, похожего на машинное обучение. Если разобраться с идеей, он станет для вас очень понятным и интуитивным.

Большинство реализаций и объяснений коллапса волновой функции — это полная, оптимизированная по скорости версия алгоритма. Разумеется, все они важны и необходимы, но в них сложно разобраться с нуля. В этом посте я буду объяснять всё понятным я простым языком, сосредоточившись на версии Wavefunction с ограничениями, которую я назвал Even Simpler Tiled Model. Кроме того, я выложил пример реализации ESTM на Github. Код в нём неэффективный и медленный, но очень хорошо читаемый и подробно прокомментирован. Как только вы разберётесь в технологии, лежащей в основе ESTM, то станете ближе к пониманию более сложных версий алгоритма. Если хотите понять алгоритм коллапса волновой функции, то эта статья будет хорошим началом.
Читать полностью »

5 главных алгоритмов сэмплинга - 1

Работа с данными — работа с алгоритмами обработки данных.

И мне приходилось работать с самыми разнообразными на ежедневной основе, так что я решил составить список наиболее востребованных в серии публикаций.

Эта статья посвящена наиболее распространённым способам сэмплинга при работе с данными.

Читать полностью »

Генерация подземелий и пещер для моей игры - 1

На этой неделе я начал работать над новой темой: генерацией подземелий и пещер. Я использовал разбиение пространства для генерации комнат, алгоритмы генерации лабиринтов для генерации коридоров и клеточные автоматы для придания пещерам более естествненного внешнего вида.

Разбиение пространства

Существует множество способов генерации комнат для подземелья (случайное размещение, генерация на основе агентов, с использованием separation steering behavior или физического движка, и т.д.). Но мой любимый метод — это разбиение пространства, потому что оно легко контролируется и расширяется.

Способов разбиения пространства тоже очень много: разделение на сетки, двоичное разбиение пространства, разбиение пространства деревом квадрантов, диаграммы Вороного и т.д. Я решил использовать двоичное разбиение пространства, потому что оно хорошо подходит для генерации прямоугольных комнат. Этот метод получил популярность благодаря статье на RogueBasin.

Единственная сложность этого алгоритма — выбор позиции разделения. Если мы не наложим ограничение на позицию разделения, то будем получать странные разбиения пространства:

Генерация подземелий и пещер для моей игры - 2

Такого поведения можно избежать несколькими способами. Один из них — ограничить позицию разделения двумя соотношениями длин сторон, например, в интервале от 30% до 70% или от 40% до 60%. Другой способ — использовать вместо равномерного распределения нормальное или биномиальное, благодаря этому повысится вероятность разделения по центру стороны, а не по краям. Эти способы устраняют проблему, но сложно понять, как конкретно параметры влияют на окончательный результат.
Читать полностью »

Новый алгоритм трассировки пути для оптимизации работы GPU: Wavefront Path Tracing - 1

В этой статье мы исследуем важную концепцию, используемую в недавно выпущенной платформе Lighthouse 2. Wavefront path tracing, как её называют Лейн, Каррас и Аила из NVIDIA, или streaming path tracing, как она изначально называлась в магистерской диссертации ван Антверпена, играет важнейшую роль в разработке эффективных трассировщиков пути на GPU, а потенциально и трассировщиков пути на CPU. Однако она довольно контринтуитивна, поэтому для её понимания необходимо переосмыслить алгоритмы трассировки лучей.
Читать полностью »

Как устроен балансировщик команд в World of Tanks Blitz - 1

WoT Blitz — это мобильный танковый шутер, в котором игроки сражаются в формате 7 на 7.
Матчмейкер, или балансировщик это механизм, который на основе очереди игроков, желающих попасть в бой, формирует состав команд.

У танков есть следующие важные для матчмейкинга параметры:

  • Уровень. В зависимости от уровня, у танков меняются различные характеристики (например, скорость, бронепробитие). На 1-ом уровне — самые слабые танки, на 10-ом — самые сильные.
  • Тип. В WoT Blitz существует 4 типа танков: лёгкий, средний, тяжёлый и ПТ-САУ (противотанковые самоходные артиллерийские установки)

Самая простая реализация матчмейкера — закидывание игроков в команды случайным образом. Но в данном случае у игроков на низких уровнях не будет никаких шансов нанести хоть какой-то урон, и играть станет неинтересно.
Читать полностью »

image Привет, Хаброжители! Алгоритмы — это сердце и душа computer science. Без них не обойтись, они есть везде — от сетевой маршрутизации и расчетов по геномике до криптографии и машинного обучения. «Совершенный алгоритм» превратит вас в настоящего профи, который будет ставить задачи и мастерски их решать как в жизни, так и на собеседовании при приеме на работу в любую IT-компанию.

Во второй книге Тим Рафгарден — гуру алгоритмов — расскажет о графовом поиске и его применении, алгоритме поиска кратчайшего пути, а также об использовании и реализации некоторых структур данных: куч, деревьев поиска, хеш-таблиц и фильтра Блума.

В данном посте представлен отрывок «Фильтры Блума: основы»
Читать полностью »

image

Какой маршрут будет самым безопасным, где больше всего врагов и где ближайшая аптечка? Все эти часто встречающиеся задачи о пространственных связях можно эффективно решать при помощи математических разбиений под названием «диаграммы Вороного». Из этого поста вы узнаете, как анализировать игровые карты и получать информацию, обеспечивающую реализм и успех искусственного интеллекта.


Пространственные отношения

Пространственное отношение — это любая информация, описывающая, как связан один объект в пространстве с другим. Примеры: расстояние между ними, площадь покрываемого каждым из них пространства и пересечение этих площадей, количество таких объектов, расположенных в одной области.

Такие отношения постоянно используются в видеоиграх и могут предоставлять очень полезную информацию ИИ, а также самому игроку.


У Вороного есть ответ

Диаграмма Вороного описывает пространственное отношение между близко расположенными точками или их их ближайшими соседями. Это множество соединённых многоугольников, полученных из точек или локаций. Каждая линия «области» Вороного находится посередине между двумя точками.
Читать полностью »

Как можно более равномерное распределение точек на сфере — невероятно важная задача в математике, науке и компьютерных системах, а наложение сетки Фибоначчи на поверхность сферы при помощи равновеликой проекции — чрезвычайно быстрый и эффективный метод аппроксимации для её решения. Я покажу, как благодаря незначительным изменениям его можно сделать ещё лучше.

Равномерное распределение точек на сфере - 1

Какое-то время назад этот пост появился на главной странице Hacker News. Его обсуждение можно прочитать здесь.

Введение

Задача равномерного распределения точек на сфере имеет очень долгую историю. Это одна из самых хорошо исследованных задач в математической литературе по сферической геометрии. Она имеет критическую важность во многих областях математики, физики, химии, в том числе в вычислительных методах, теории приближений, теории кодирования, кристаллографии, электростатике, компьютерной графике, морфологии вирусов и многих других.

К сожалению, за исключением нескольких особых случаев (а именно платоновых тел) невозможно идеально ровно распределить точки на сфере. Кроме того, решение задачи сильно зависит от критерия, который используется для оценки однородности. На практике используется множество критериев, в том числе:

  • Упаковка и покрытие
  • Выпуклые оболочки, ячейки Вороного и треугольники Делоне
  • Ядра $s$-энергии Риса
  • Кубатура и определители

Очень важно уяснить этот аспект: обычно не существует единственного оптимального решения этой задачи, потому что оптимальное решение, основанное на одном критерии, часто не является оптимальным распределением точек для других. Например, мы также выясним, что оптимизация упаковки необязательно создаёт оптимальную выпуклую оболочку и наоборот.

Ради краткости в этом посте мы рассмотрим только два критерия: минимальное расстояние упаковки и выпуклую оболочку/сетку Делоне (объём и площадь).
Читать полностью »

В предыдущей статье про модельно ориентированное проектирование было показано, что не все методики одинаково полезны. И объясняется как делать правильно, что бы не было потом мучительно больно. Но в конце статье был поставлен вопрос, провокационный как Шарон Стоун на допросе у следователей:
Модельно ориентированное проектирование это конечно хорошо, но как доказать, что модель соответствует объекту? Какие ваши доказательства?
Модельно ориентированное проектирование. Электропривод с бесколлекторным двигателем постоянного тока - 1
Общий ответ на данный вопрос еще готовится, но про частный зато реальный и свежий пример могу привести прямо сейчас. Оказался тут у меня в руках, как всегда случайно, текст от ведущего специалиста нашей страны по электроприводу Калачева Юрия Николаевича, вместе с его любезным согласием на публикацию. Данный текст еще готовится к публикации в специализированных издания, но читатели хабра увидят его первые.
Далее под катом
Калачев Ю. Н., Ланцев В.Ю., Окулов Е.В.
Электропривод с бесколлекторным двигателем постоянного тока
(практика применения моделирования и кодогенерации в АО «Аэроэлектромаш»)

Читать полностью »

Развивая тему конспектов по магистерской специальности "Communication and Signal Processing" (TU Ilmenau), продолжить хотелось бы одной из основных тем курса "Adaptive and Array Signal Processing". А именно основами адаптивной фильтрации.

Для кого в первую очередь была написана эта статья:

1) для студенческой братии родной специальности;
2) для преподавателей, которые готовят практические семинары, но ещё не определились с инструментарием — ниже будут примеры на python и Matlab/Octave;
3) для всех, кто интересуется темой фильтрации.

Что можно найти под катом:

1) сведения из теории, которые я постарался оформить максимально сжато, но, как мне кажется, информативно;
2) примеры применения фильтров: в частности, в рамках эквалайзера для антенной решетки;
3) ссылки на базисную литературу и открытые библиотеки (на python), которые могут быть полезны для исследований.

В общем, добро пожаловать и давайте разбирать всё по пунктам.

Оптимальная линейная фильтрация: от метода градиентного спуска до адаптивных фильтров - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js