Рубрика «Алгоритмы» - 26

Некоторые математические задачи нерешаемы, и это не так уж плохо - 1
Постройте выпуклый восьмиугольник с четырьмя прямыми углами.

Вероятно, то, что я даю такие задания, многое говорит обо мне, как об учителе. Я наблюдаю за тем, как студенты пытаются выстроить прямые углы последовательно. Когда у них это не получается, они пытаются перемежать прямые углы. Снова потерпев неудачу, они вставляют их в многоугольник случайным образом. Скрежет, издаваемый их мозгами во время мыслительных усилий — музыка для ушей учителя.

Потом у них возникают подозрения и они начинают задавать вопросы. «Вы сказали о прямых углах. Может, на самом деле вы имели в виду три угла?», «Вы точно имели в виду выпуклый многоугольник?», «Четыре прямых угла, по сути, образуют прямоугольник. Как мы можем получить ещё четыре стороны в восьмиугольнике?» Я внимательно слушаю, киваю, подтверждая их догадки.
Читать полностью »

В прошлой статье речь шла о том, как можно сложить массив из чисел типа double наиболее точно, то есть получить такую сумму, как если бы мы выполняли вычисления в рамках арифметики с бесконечной точностью, а затем один раз округлили бы результат. Был показан алгоритм, который эквивалентен применению типа данных double-double, в котором сложение происходит сразу в двух переменных: основная сумма и хвостик-погрешность. Опытные читатели сразу догадались, что сложение хвостиков-погрешностей также допускает по отношению к себе рекурсивное применение того же алгоритма, что приводит не к удвоенной, а к утроенной точности, и вообще, можно организовать каскад сложений произвольного размера, получая любую наперёд заданную точность расчётов, поэтому фактически в прошлой статье была показана предпосылка к так называемой «дробной длинной арифметике». Опытный программист без труда разберётся как её реализовать, ну а я обещал дать аналогичные фундаментальные основы для скалярного произведения и вычисления полинома в точке. Поскольку все базовые вводные слова уже были сказаны в двух предшествующих статьях, в этой будет меньше «воды» и «лишних», по мнению опытных математиков, сведений. Прошу под кат.

Наиболее точное скалярное произведение векторов типа double. Вычисление значения полинома - 1

Читать полностью »

«Привет, мир»: разбираем каждый шаг хэш-алгоритма SHA-256 - 1

SHA-2 (Secure Hash Algorithm), в семейство которого входит SHA-256, — это один самых известных и часто используемых алгоритмов хэширования. В тексте подробно покажем каждый шаг работы этого алгоритма на реальном примере. SHA-2 отличается безопасностью (его тяжелее взломать, чем SHA-1) и скоростью.
Читать полностью »

Захотелось мне как-то сделать более надёжной передачу информации через радиоканал. Это не какой-то промышленный проект, или что-то другое серьёзное. Это скорее для хобби и саморазвития. Сказалась травма детства — отсутствие нормально работающей радиоуправляемой машинки. С тех пор мне всегда хотелось уметь легко и непринуждённо управлять чем угодно по радио...

И так, я отвлёкся. В детстве-юношестве для помехоустойчивого кодирования можно было бы применить контроль чётности по матричному методу, но сейчас это не серьёзно. Полистав интернет я решил остановиться на кодировании по методу Рида-Соломона. Алгоритм не то, чтобы совсем новый, его ещё в первых CD применяли, но при этом, насколько мне известно, не потерявший своей актуальности и на данный момент. В этой статье о самих кодах Рида-Соломона я не буду сильно распространяться – это за меня на Хабре сделали много раз и много кто. Здесь я хочу описать реализацию алгоритма умножения в GF[256]. Тем не менее, чтобы не заставлять читателя прыгать по ссылкам, кратенько опишу зачем вообще приходится иметь дело
с полями Гаула.

Читать полностью »

Быстрый поиск касательных и пересечений у выпуклых многоугольников - 1

Я недавно сделал маленькую библиотеку для решения задачи поиска кратчайшего пути на 2D карте с выпуклыми препятствиями. В процессе реализации я придумал пару алгоритмов и трюков, описания которых я нигде не встречал. Поэтому делюсь этими "изобретениями" с общественностью.

Горжусь тем, что мое решение работает очень быстро. Для внушительного количества полигонов все операции можно выполнять каждый кадр. Т.е. не надо ничего запекать и вся геометрия карты может меняться в каждом кадре.

Читать полностью »

Несколько лет назад мне пришлось погрузиться в данную тему по работе. Погуглив, я, к удивлению своему, не нашёл каких-то готовых решений. Да и до сих пор, в общем-то, ничего не видно. Поэтому пришлось разрабатывать тему с нуля.

Чтобы было понятно о чем речь, приведу простейший пример.

image
Читать полностью »

Всем привет!

В этой статье я хочу рассказать про реализацию алгоритма сверхдлинного быстрого преобразования Фурье на ПЛИС. Написать эту статью меня побудило желание поделиться личным практическим опытом, который не хотелось бы потерять, оставив информацию только у себя в голове. А поскольку я больше не занимаюсь задачами цифровой обработки сигналов на ПЛИС, то я просто обязан передать доступные мне знания.

В этой статье показана невозможность реализации «классической» схемы очень длинного БПФ даже на самых современных кристаллах ПЛИС. Также пошагово рассмотрена основная идея алгоритма: от математической составляющей до создания законченного решения на базе ПЛИС с использованием внешней DDR-памяти. Статья затронет тонкости проектирования многоканальных систем обработки для подобного класса задач и, в частности, опишет мой практический опыт.

Сверхдлинное преобразование Фурье на FPGA - 1
Читать полностью »

Как «Сумерки» навсегда испортили поиск картинок Google - 1

Поучаствуйте со мной в эксперименте. При помощи поиска изображений Google мы будем искать разные времена суток. Откроем новое окно Google Chrome в режиме инкогнито, чтобы результаты не были искажены нашей историей поиска. В конце концов, это ведь научный эксперимент, и нам нужны наиболее точные результаты.

Для начала попробуем найти «sunrise» («рассвет»).
Читать полностью »

Внимательно прочитал очень хорошие статьи от ArtemKaravaev по сложению чисел с плавающей точкой. Тема очень интересная и хочется её продолжить и показать на примерах, как работать с числами с плавающей точкой на практике. В качестве эталона возьмём библиотеку GNU glibc (libm). А чтобы статья не была уж скучной, добавим соревновательную составляющую: попробуем не только повторить, но и улучшить код библиотеки, сделав его более быстрым/точным.

В качестве примера я выбрал тригонометрическую функцию синуса. Это широко распространённая функция, математика которой хорошо известна со школы и университета. В тоже время при её имплементации появятся много ярких примеров «правильной» работы с числами. В качестве числа с плавающей точкой я буду использовать double.

В данном цикле статей планируется много всего начиная от математики, заканчивая машинными кодами и опциями компилятора. Язык написания статьи С++, но без «излишеств». В отличии от С работающие примеры будут более удобочитаемыми даже для людей не знакомым с этим языком и занимать меньше строк.

Статьи будут написаны методом погружения. Будут обсуждаться подзадачи, которые потом соберутся вместе в единое решение проблемы.
Читать полностью »

Недавно Боб Стигалл сделал в конференции CppCon 2020 доклад под названием «Adventures in SIMD-thinkingЧитать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js