Рубрика «алгебра»

Калибровка MEMS Акселерометра [Часть 2] - 1

В этом тексте я написал про то какая математика скрыта за алгоритмом калибровки трёх осевого MEMS акселерометров.

Этот текст является продолжением предыдущего текста Геометрия Стенда для Калибровки MEMS Акселерометра. Настоятельно рекомендую его прочесть. Иначе всё, что вы увидите ниже будет просто пустой звук.

Читать полностью »

Это последняя статья на эту тему. Все предыдущие с таким заголовком были тренировочными перед этой, с разным результатом разумеется. И мне и вам тема как бы интересна, но прямо скажем - не будем на этом зацикливаться.

Спойлеры, что вас ждет в финале:

  1. Визуализация действия операторов Паули на векторы в динамике.

  2. Концепция объединения линейной алгебры и ТФКП.

  3. Простое определение геометрического произведения.

  4. Взаимодействие ковекторов и векторов: градиент и оператор Лапласа.

  5. Обобщение формулы Муавра на матрицы 2х2

  6. Читать полностью »

«Врубай на Максиму!» или учимся решать математические задания для 6 и 7 классов в WxMaxima - 1

Практически 10 лет и 50 статей назад, я набросал материал о моём знакомстве с замечательной системой компьютерной алгебры Maxima. Читать полностью »

Абстрактная алгебра в действии - 1

В последнее время всё чаще я ощущаю математическое веяние в программировании. Нет, это не про интегралы с производными, а про что-то абстрактное, другое. Про то, что было всегда у нас под носом, но оставалось незамеченным. Наступит день - про это будут говорить на каждом углу. Но не сегодня. Сегодня мы с этим познакомимся.


Читать полностью »

Публикуется с разрешения автора.

От переводчика

Текст, перевод которого я намерен представить вашему вниманию, — краткая автобиография (называющаяся в оригинале «Mathematical Software and Me: A Very Personal Recollection», то есть «Математическое ПО и я: очень личные размышления»), написанная в 2009-м году Уильямом Стайном (имя которого по-русски иногда пишут как «Вильям Стейн»), бывшим профессором математики Вашингтонского Универститета, получившим степень Ph. D. в Беркли (Калифорния). Математическая составляющая профессиональных интересов доктора Стайна — теория чисел. Этот текст о его, возможно, главном деле — системе компьютерной математики, ранее называвшейся Sage, в настоящее время переименованной в SageMath, существующей также в облачной версии, которая раньше называлась SageMathCloud, а теперь — CoCalc. (На Хабре эти системы неоднократно упоминались: например, freetonik написал о Sage, а sindzicat поведал о SageMathCloud.) Когда я прочитал «Mathematical Sofrware and Me» первый раз, этот текст меня очень впечатлил. И прежде, чем перейти к самому переводу, я попробую кратко объяснить, чем же именно.

image
Автор оригинального текста (слева)
Читать полностью »

Корректирующие коды «на пальцах» - 1Корректирующие коды — это коды, которые могут обнаружить и (если повезёт) исправить ошибки, возникшие при передаче данных. Даже если вы ничего не слышали о них, то наверняка встречали аббревиатуру CRC в списке файлов в ZIP-архиве или даже надпись ECC на планке памяти. А кто-то, может быть, задумывался, как так получается, что если поцарапать DVD-диск, то данные всё равно считываются без ошибок (конечно, если царапина не в сантиметр толщиной и не разрезала диск пополам).

Как нетрудно догадаться, ко всему этому причастны корректирующие коды. Собственно, ECC так и расшифровывается — «error-correcting code», то есть «код, исправляющий ошибки». А CRC — это один из алгоритмов, обнаруживающих ошибки в данных. Исправить он их не может, но часто это и не требуется.

Давайте же разберёмся, что это такое.

Для понимания статьи не нужны никакие специальные знания. Достаточно лишь понимать, что такое вектор и матрица, как они перемножаются и как с их помощью записать систему линейных уравнений.

Внимание! Много текста и мало картинок. Я постарался всё объяснить, но без карандаша и бумаги текст может показаться немного запутанным.

Читать полностью »

В этой статье мне бы хотелось рассказать об одном интересном математическом приеме, который будучи весьма интересным и полезным мало известен широкому кругу людей, занимающихся компьютерной графикой.

Сколько существует разных способов представить обыкновенный поворот в трехмерном пространстве? Большинство людей, когда-либо занимавшихся 3D-графикой или 3D-моделированием, сходу назовут три основных широко распространенных варианта:

  • Матрица поворота 3x3;
  • Задание поворота через углы Эйлера;
  • Кватернионы.

Люди с богатым опытом добавят сюда почему-то не пользующийся популярностью четвертый пункт:

  • Ось поворота и угол.

Мне бы хотелось рассказать о пятом способе представления вращений, который симпатичен тем, что удобен для параметризации, позволяет эффективно строить полиномиальные аппроксимации этих параметризаций, проводить сферическую интерполяцию, и главное, универсален — с минимальными изменениями он работает для любых видов движений. Если вам когда-либо был нужен метод, который позволял бы легко сделать «аналог slerp, но не для чистых вращений, а для произвольных движений, да еще и с масштабированием», то читайте эту статью. Читать полностью »

Первый интерактивный учебник по линейной алгебре - 1

«Изображение говорит больше, чем тысяча слов», — такой принцип взяли на вооружение авторы учебника «Захватывающая линейная алгебра» ("Immersive Linear Algebra") с полностью интерактивными иллюстрациями. Авторы говорят, что это первый мире учебник такого рода.
Читать полностью »

Что такое тензор? - 1

Дэн Фляйш дает краткие объяснения математических концепций вектора и тензора.

Оригинал видео

P.S. Как всегда, в комментариях вы можете предложить интересные видео на перевод.

Читать полностью »

Ещё из школьного курса алгебры все знают, как определить количество корней в квадратном уравнении. Оказывается, на аналогичный вопрос о кубическом уравнении проще всего ответить, перейдя от алгебры к геометрии, а решать само уравнение для этого вовсе не обязательно. Важная геометрическая конструкция, о которой пойдет речь на лекции, используется в математике и для других целей.

Начнем мы издалека, с квадратных уравнений. Возьмем простое уравнение: x2+px+q=0. Теперь определим, сколько у него корней в зависимости от p и q. Два корня у нас будет в том случае, если p2-4q>0. Если же p2-4q<0, то у нашего уравнения будет 0 корней. Ну и в промежуточном варианте p2-4q=0 будет один корень.

Теперь рассмотрим подобное кубическое уравнение: x3+ax2+bx+c=0. И поставим такой же вопрос: сколько корней будет у уравнения, в зависимости от a, b и c. Формула для корней кубического уравнения была открыта еще в XVI веке, однако понять с ее помощью, сколько у уравнения может быть корней, достаточно затруднительно, и сегодня мы ей пользоваться не будем. Мы постараемся узнать, сколько у уравнения корней, формулы для них не находя.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js