При разработке приложений на основе больших языковых моделей (LLM, Large Language Model) встает вопрос: вызывать ли модель напрямую через API (например, OpenAI) или использовать специализированные фреймворки вроде LangChain или LangGraph. Ниже мы рассмотрим, с какими сложностями сталкивается разработчик при прямом использовании LLM, и как LangChain и LangGraph помогают упростить создание сложных диалоговых и агентных систем. Также приведем примеры кода, сравнивая прямые вызовы с использованием этих фреймворков, и обсудим, когда их применение оправдано.
Рубрика «агенты ии»
Как LangChain и LangGraph упрощают жизнь разработчика ИИ-Агентов
2025-02-11 в 10:17, admin, рубрики: chatgpt, LangChain, langgraph, llm, OpenAI, python, агенты ии, чат-ботMicrosoft открывает систему AirSim для тренировки ИИ для управления беспилотниками
2017-02-16 в 18:18, admin, рубрики: агенты ии, будущее здесь, дроны, ИИ, искусственный интеллект, коптеры, транспорт будущегоЛюди и животные при движении ориентируются относительно быстро, избегая препятствий в почти что рефлекторно. Кроме того, если человек не может сходу преодолеть очередную проблему на своем пути — например, открыть дверь с необычной ручкой, то за несколько секунд или минут обдумывания проблема решается и дверь, как правило, поддается. В следующий раз эта ручка уже не составит проблем. Речь, конечно, не только о дверях и ручках, а о решении подобных ситуаций в целом.
Кроме того, люди (равно, как и некоторые животные) могут предсказать, какое препятствие появится в течение последующих пары секунд или даже минут. Видя на своем пути киоск с газетами, человек понимает, что через 10-20 секунд его нужно обогнуть. С роботами (включая беспилотные автомобили и летающие аппараты) все сложнее. Для того, чтобы они умели решать свои проблемы самостоятельно, их нужно обучать. Корпорация Microsoft в числе прочих организаций занимается этой проблематикой и делает кое-какие успехи.
Читать полностью »