Рубрика «adversarial»

Всем привет. Этой статьей я начинаю серию рассказов о состязательный сетях. Как и в предыдущей статье я подготовил соответствующий докер-контейнер в котором уже все готово для того чтобы воспроизвести то что написано здесь ниже. Я не буду копировать весь код из примера сюда, только основные его части, поэтому, для удобства советую иметь его рядом для более простого понимания. Докер контейнер доступен здесь, а ноутбук, utils.py и докерфайл здесь.

Несмотря на то, что фреймворк состязательных сетей был предложен Йеном Гудфеллоу в его уже знаменитой работе Generative Adversarial Networks ключевая идея пришла к нему из работ по доменной адаптации(Domain adaptation), поэтому и начнем мы обсуждение состязательных сетей именно с этой темы.

Представьте, что у вас есть два источниках данных о похожих наборах объектов. Например это могут быть медицинские записи разных социально-демографических групп(мужчины/женщины, взрослые/дети, азиаты/европейцы...). Типичные анализы крови представителей разных групп будут отличаться, поэтому модель, предсказывающая, скажем, риск сердечно-сосудистых заболеваний(ССЗ), обученная на представителях одной выборки не может применяться к представителям другой выборки.

Читать полностью »

Всем привет. Меня зовут Артур Кадурин, я руковожу исследованиями в области глубокого обучения для разработки новых лекарственных препаратов в компании Insilico Medicine. В Insilico мы используем самые современные методы машинного обучения, а также сами разрабатываем и публикуем множество статей для того чтобы вылечить такие заболевания как рак или болезнь Альцгеймера, а возможно и старение как таковое.

В рамках подготовки своего курса по глубокому обучению я собираюсь опубликовать серию статей на тему Состязательных(Adversarial) сетей с разбором того что же это такое и как этим пользоваться. Эта серия статей не будет очередным обзором GANов(Generative Adversarial Networks), но позволит глубже заглянуть под капот нейронных сетей и охватит более широкий спектр архитектур. Хотя GANы мы конечно тоже разберем.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js