- PVSM.RU - https://www.pvsm.ru -
Хотите обеспечить бесперебойное питание своим устройствам, но при этом не сильно потратиться? Именно такой своей разработкой я и хотел с вами поделиться.
Все мы переживаем, когда устройства внезапно отключаются «по питанию» и не зря. Большая часть нештатного отключения электроэнергии сопровождается скачками повышенного напряжения, что в свою очередь может привести к поломке оборудования или сбросу настроек. Да, на этот случай различные компании выпускают ИБП, но они достаточно велики и весят как правило не менее нескольких килограмм.
А что если сделать такой источник бесперебойного питания, который можно поставить прямо рядом с защищаемым устройством – лёгкое, компактное, недорогое?
Я живу в частном доме и моя работа на 100% зависит от доступности интернета.
Но так уж получилось, что в нашем районе Ленинградской области ситуация с энергоснабжением обстоит очень печально. Достаточно частые отключении при резком изменении погоды, изношенные высоковольтные линии идущие к нам и прочее. Соответственно при аварии на электросетях падает вся сетевая инфраструктура и пока всё поднимется, восстановятся все маршруты (OSPF) пройдет минимум 2-3 минуты. Также стоит вспомнить об опасности таких отключений для самого оборудования. На запуск и ввод резервного источника питания (генератор) необходимо примерно 5-10 минут.
В данной ситуации UPS не роскошь – он необходим как воздух.
Сетевая инфраструктура у меня построена на оборудовании MikroTik, оно простое но его достаточно много:
Питать всё это от одного классического UPS не реально – оборудование раскидано по территории. Во вторых при моих условиях АКБ внутри классического бесперебойника умирает примерно за 1.5 года, а стоимость новой батареи достаточно высока.
Я периодически думал как решить данную задачу и принял решение сделать свой ИБП обладающий характеристиками:
При детальном рассмотрении задачи и всего «зоопарка» оборудования я понял, что hAP Lite – это слабое звено во всей цепочке. Во первых ему нужно 5В (всем остальным от 12 до 48), во вторых у него micro-usb разъем питания и нет PoE-in. Поэтому данные устройства были выведены из списка защищаемых и при отключении ЭЭ они «падают» как и раньше.
В процессе раздумий над схемой я понял, что лучше использовать в качестве базового напряжения АКБ – 12В, а дальше, по необходимости менять преобразователи на повышающий или понижающий. Это сделает UPS универсальным и позволит питать устройства в диапазоне от 1 до 48В, также снизит стоимость устройства за счет снижения количества АКБ до 3х.
Для сборки нужны детали:
Цены указываю при покупке на территории РФ. Если брать у наших соседей, то стоимость будет ниже примерно на 60%, а т.к плата все равно будет ехать из-за бугра, то и детали можно смело брать там.
Итого: 450 руб.
Изготовление печатной платы на jlcpcb с доставкой в РФ – 750 руб. за 5 штук. (150 руб/шт)
3 аккумулятора размера 18650. Средняя стоимость – 300 руб.
Итого общая стоимость за одно устройство: ±1500 руб.
Обратите внимание, на АКБ нельзя экономить! Брать не явный Китай и желательно высокотоковый!
Нам не нужны повторения историй, коих и так увы очень много последнее время по всем федеральным каналам. АКБ не обязательно должен быть с защитой, ввиду того, что плата заряда аккумулятора, используемая нами уже имеет защиту от чрезмерного заряда/разряда.Тест взрывоопасности АКБ 18650
Сразу привожу наглядный тест на безопасность именно АКБ 18650. Вариант пробития гвоздем не рассматриваем ввиду нереальности – https://www.youtube.com/watch?v=tOsxiLKyKwQ
Принципиальная схема данного устройства очень простая
Итак – у нас есть один входной разъем питания (Vin), и три выходных (Vout). XP1 – это стандартная гребенка PLS с шагом 2.54, к которой подключается кнопка включения питания, а также можно поставить джампер (как в моем случае), если планируется все время держать устройство во включенном состоянии.
Также на плате есть два светодиода, показывающие наличие напряжение во входной сети (Vin) и напряжения на выходе устройства (Vout), подключенные через стабилитрон (D1, D2) на 3В и резисторы (на нижней стороне платы) R2 220 Ом и R1 1кОм соответственно.
U6 – это контакты для подключения модуля вольтметра, который отображает напряжение на выходе устройства.
Верхняя сторона платы
На нижней стороне платы у нас размещен контроллер заряда (U2) и три диода Шоттки (U3, U4, U5).
Нижняя сторона платы
Основной принцип работы схемы и переключения с основного на резервное питание зависит от трех диодов Шоттки – U3, U4, U5.
Ниже представлена наглядная схема направления и какие узлы в каких ситуациях находятся под напряжением.
U4 – пропускает напряжение только в направлении контроллера заряда, напряжение с контроллера не попадает обратно во входную сеть. Это достаточно важный диод, т.к при его отсутствии напряжение будет утекать из модуля заряда (АКБ) в направлении источника питания.
Розовым цветом показана ситуация, когда у нас присутствует напряжение во входной сети (Vin). В этом случае диоды U3 и U4 пропускают напряжение в направлении контроллера заряда (U2) и DC/DC-преобразователя (U1). При этом напряжение из АКБ и контроллера заряда (голубой маршрут) не поступает в «розовую сеть» через диоды U4 и U5.
U5 – работает таким образом, что пока входное напряжение присутствует, на его катоде будет «+», он будет в закрытом состоянии и не «выпустит» напряжение из АКБ в направлении Vout, а также не пропустит напряжение из входной сети. Если же, напряжение на входе пропало U5 тут же перейдет в свое рабочее состояние и пропустит напряжение с АКБ в сторону DC/DC-преобразователя (U1) – зеленый маршрут. Однако чтобы исключить «петлю» – когда напряжение из АКБ попадает на вход модуля заряда, а также может утекать в источник питания на входе, мы используем диод U3 и пока на его катоде будет «+», он будет закрыт.
Платы, полученные от jlcpcb – как всегда отличные, здесь на самом деле придраться не к чему – настоящее промышленное производство за очень гуманную плату. Срок изготовления – 3-4 дня, срок доставки до Ленинградской области в районе 20 дней.
Распаиваем, проверяем…
Печатаем корпус, собираем устройство и вот что у нас получилось
Теперь, когда устройство собрано и мы знаем как оно работает, нам нужно запомнить, что мы можем от него питать. Самое главное – это помнить какие токи потребления может обеспечить данное устройство. В схеме я использую преобразователь на 3А. Ток разряда АКБ 18650, как правило, равен двух-кратной величине ёмкости (если не рассматриваем высокотоковые). Таким образом при использовании аккумулятором емкостью 2000 mA, они способны отдавать ток до 4А.
Однако стоит помнить, что если мы на DC/DC-преобразователе увеличили выходное напряжение вдвое, например питаем оборудование от 24В током 1А, то ток до преобразователя также увеличится вдвое и АКБ будут отдавать заряд током 2А.
Соответсвенно лучше запомнить такую закономерность:
Проводим нагрузочный тест и определяем время автономной работы
В UPS установлены АКБ GoPower на 2000 мА. Выходное напряжение – 12В. К UPS подключено 3 устройства – hEX PoE к которому, в свою очередь, через PoE-out подключены CSS106-5G-1S и 951Ui-2HnD. Трафик в сети, на момент отключения входного питания продолжает «бегать».
Итого суммарное потребление всех устройств составило порядка 0.55-0.65А (менялось в процессе измерений). CSS106-5G-1S – ±185мА, 951Ui-2HnD – ±280мА плюс собственное потребление hEX. До отключения данная сборка проработала 2 часа 15 минут, при этом остаточное напряжение на трех аккумуляторах составило 6.5В. Сильнее разрядить не получилось, сработала защита от глубокого разряда на модуле 3S. Температура аккумуляторов не изменилась, что говорит о несущественной нагрузке в процессе разряда.
Таким образом я получил небольшое устройство, способное эффективно питать несколько роутеров при наличии PoE-out, а в случае отсутствия – возможность разместить UPS непосредственно возле устройства и при этом при минимальных затратах.
Надеюсь данная статья будет полезна и вам!
Материалы из статьи
Макет схемы, печатной платы в формате DipTrace, а корпус в STL для печати на 3D-принтере [1]
Автор: Дмитрий
Источник [3]
Сайт-источник PVSM.RU: https://www.pvsm.ru
Путь до страницы источника: https://www.pvsm.ru/arduino/364096
Ссылки в тексте:
[1] Макет схемы, печатной платы в формате DipTrace, а корпус в STL для печати на 3D-принтере: https://github.com/dagababaev/SOHO-UPS
[2] Image: http://ruvds.com/ru-rub?utm_source=habr&utm_medium=article&utm_campaign=dmitrij_agababaev&utm_content=soho_ups_v_malenkom_korpuse_i_svoimi_rukami_menee_chem_za%C2%A01500_rub
[3] Источник: https://habr.com/ru/post/556508/?utm_source=habrahabr&utm_medium=rss&utm_campaign=556508
Нажмите здесь для печати.