«Мы задаёмся вопросом, почему группа талантливых и преданных своему делу людей готова посвятит жизнь погоне за такими малюсенькими объектами, которые даже невозможно увидеть? На самом деле, в занятиях физиков элементарных частиц проявляется человеческое любопытство и желание узнать, как устроен мир, в котором мы живём» Шон Кэрролл
Если вы всё ещё боитесь фразы квантовая механика и до сих пор не знаете, что такое стандартная модель — добро пожаловать под кат. В своей публикации я попытаюсь максимально просто и наглядно объяснить азы квантового мира, а так же физики элементарных частиц. Мы попробуем разобраться, в чём основные отличия фермионов и бозонов, почему кварки имеют такие странные названия, и наконец, почему все так хотели найти Бозон Хиггса.
Из чего мы состоим?
Ну что же, наше путешествие в микромир мы начнём с незатейливого вопроса: из чего состоят окружающие нас предметы? Наш мир, как дом, состоит из множества небольших кирпичиков, которые особым образом соединяясь, создают что-то новое, не только по внешнему виду, но ещё и по своим свойствам. На деле, если сильно к ним приглядеться, то можно обнаружить, что различных видов блоков не так уж и много, просто каждый раз они соединяются друг с другом по-разному, образуя новые формы и явления. Каждый блок — это неделимая элементарная частица, о которой и пойдёт речь в моём рассказе.
Для примера, возьмём какое-нибудь вещество, пусть у нас это будет второй элемент периодической системы Менделеева, инертный газ, гелий. Как и остальные вещества во Вселенной, гелий состоит из молекул, которые в свою очередь образованы связями между атомами. Но в данном случае, для нас, гелий немного особенный, потому что он состоит всего из одного атома.
Из чего состоит атом?
Атом гелия, в свою очередь, состоит из двух нейтронов и двух протонов, составляющих атомное ядро, вокруг которого вращаются два электрона. Самое интересное, что абсолютно неделимым здесь является лишь электрон.
Интересный момент квантового мира
Чем меньше масса элементарной частицы, тем больше места она занимает. Именно по этой причине электроны, которые в 2000 раз легче протона, занимают гораздо больше места по сравнению с ядром атома.
Нейтроны и протоны относятся к группе так называемых адронов (частиц, подверженных сильному взаимодействию), а если быть ещё точнее, барионов.
Адроны можно разделить на группы
- Барионов, которые состоят из трёх кварков
- Мезонов, которые состоят из пары: частица-античастица
Нейтрон, как ясно из его названия, является нейтрально заряженным, и может быть поделён на два нижних кварка и один верхний кварк. Протон, положительно заряженная частица, делится на один нижний кварк и два верхних кварка.
Да, да, я не шучу, они действительно называются верхний и нижний. Казалось бы, если мы открыли верхний и нижний кварк, да ещё электрон, то сможем с их помощью описать всю Вселенную. Но это утверждение было бы очень далеко от истины.
Главная проблема — частицы должны как-то между собой взаимодействовать. Если бы мир состоял лишь из этой троицы (нейтрон, протон и электрон), то частицы бы просто летали по бескрайним просторам космоса и никогда бы не собирались в более крупные образования, вроде адронов.
Фермионы и Бозоны
Достаточно давно учёными была придумана удобная и лаконичная форма представления элементарных частиц, названная стандартной моделью. Оказывается, все элементарные частицы делятся на фермионы, из которых и состоит вся материя, и бозоны, которые переносят различные виды взаимодействий между фермионами.
Разница между этими группами очень наглядна. Дело в том, что фермионам для выживания по законам квантового мира необходимо некоторое пространство, в то время как их коллеги — бозоны могут спокойно триллионами жить прямо друг на друге.
Фермионы
Группа фермионов, как было уже сказано, создаёт видимую материю вокруг нас. Что бы мы и где не увидели, создано фермионами. Фермионы делятся на кварки, сильно взаимодействующие между собой и запертые внутри более сложных частиц вроде адронов, и лептоны, которые свободно существуют в пространстве независимо от своих собратьев.
Кварки делятся на две группы.
- Верхнего типа. К кваркам верхнего типа, с зарядом +23, относят: верхний, очарованный и истинный кварки
- Нижнего типа. К кваркам нижнего типа, с зарядом -13, относят: нижний, странный и прелестный кварки
Истинный и прелестный являются самыми большими кварками, а верхний и нижний — самыми маленькими. Почему кваркам дали такие необычные названия, а говоря более правильно, «ароматы», до сих пор для учёных предмет споров.
Лептоны также делятся на две группы.
- Первая группа, с зарядом «-1», к ней относят: электрон, мюон (более тяжёлую частицу) и тау-частицу (самую массивную)
- Вторая группа, с нейтральным зарядом, содержит: электронное нейтрино, мюонное нейтрино и тау-нейтрино
Нейтрино — есть малая частица вещества, засечь которую практически невозможно. Её заряд всегда равен 0.
Возникает вопрос, не найдут ли физики ещё несколько поколений частиц, которые будут еще более массивными, по сравнению с предыдущими. На него ответить трудно, однако теоретики считают, что поколения лептонов и кварков исчерпываются тремя.
Не находите никакого сходства? И кварки, и лептоны делятся на две группы, которые отличаются друг от друга зарядом на единицу? Но об этом позже...
Бозоны
Без них бы фермионы сплошным потоком летали по вселенной. Но обмениваясь бозонами, фермионы сообщают друг другу какой-либо вид взаимодействия. Сами бозоны же с друг другом не взаимодействуют.
Взаимодействие, передаваемое бозонами, бывает:
- Электромагнитным, частицы — фотоны. С помощью этих безмассовых частиц передаётся свет.
- Сильным ядерным, частицы — глюоны. С их помощью кварки из ядра атома не распадаются на отдельные частицы.
- Слабым ядерным, частицы — W и Z бозоны. С их помощью фермионы перекидываются массой, энергией, и могут превращаться друг в друга.
- Гравитационным, частицы — гравитоны. Чрезвычайно слабая в масштабах микромира сила. Становится видимой только на сверхмассивных телах.
Оговорка о гравитационном взаимодействии.
Существование гравитонов экспериментально ещё не подтверждено. Они существуют лишь в виде теоретической версии. В стандартной модели в большинстве случаев их не рассматривают.
Вот и всё, стандартная модель собрана.
Проблемы только начались
Несмотря на очень красивое представление частиц на схеме, осталось два вопроса. Откуда частицы берут свою массу и что такое Бозон Хиггса, который выделяется из остальных бозонов.
Для того, что бы понимать идею применения бозона Хиггса, нам необходимо обратиться к квантовой теории поля. Говоря простым языком, можно утверждать, что весь мир, вся Вселенная, состоит не из мельчайших частиц, а из множества различных полей: глюонного, кваркового, электронного, электромагнитного и.т.д. Во всех этих полях постоянно возникают незначительные колебания. Но наиболее сильные из них мы воспринимаем как элементарные частицы. Да и этот тезис весьма спорный. С точки зрения корпускулярно-волнового дуализма, один и тот же объект микромира в различных ситуациях ведёт себя то как волна, то как элементарная частица, это зависит лишь от того, как физику, наблюдающему за процессом, удобнее смоделировать ситуацию.
Поле Хиггса
Оказывается, существует так называемое поле Хиггса, среднее значение которого не хочет стремиться к нулю. В результате чего, это поле старается принять некоторое постоянное ненулевое значение во всей Вселенной. Поле составляет вездесущий и постоянный фон, в результате сильных колебаний которого и появляется Бозон Хиггса.
И именно благодаря полю Хиггса, частицы наделяются массой.
Масса элементарной частицы, зависит от того, насколько сильно она взаимодействует с полем Хиггса, постоянно пролетая внутри него.
И именно из-за Бозона Хиггса, а точнее из-за его поля, стандартная модель имеет так много похожих групп частиц. Поле Хиггса вынудило сделать множество добавочных частиц, таких, например, как нейтрино.
Итоги
То, что было рассказано мною, это самые поверхностные понятие о природе стандартной модели и о том, зачем нам нужен Бозон Хиггса. Некоторые учёные до сих пор в глубине души надеются, что частица, найденная в 2012 году и похожая на Бозон Хиггса в БАКе, была просто статистической погрешностью. Ведь поле Хиггса нарушает многие красивые симметрии природы, делая расчёты физиков более запутанными.
Некоторые даже считают, что стандартная модель доживает свои последние годы из-за своего несовершенства. Но экспериментально это не доказано, и стандартная модель элементарных частиц остаётся действующим образцом гения человеческой мысли.
Автор: HabraBugger
Долбня Н. О Стандартной модели:
Предлагаю «Новую физическую модель», которая включает в себя все четыре взаимодействия (с учетом и гравитационного). Кратко: 1. Амер – замкнутая черная дыра – суть Эфира: m=10(-39) кг; 2. Протон – замкнутая черная дыра – суть вещества Космоса: m=10(-27) кг; 3. Стандартная замкнутая черная дыра, рожденная в сверхновых – суть Вселенной: m=4,5* 10(31) кг. 4. Скорость их вращения – световая, постоянный коэффициент центробежной гравитации: G=c(2)R/M. 5. Текущий коэффициент космологической гравитации в Эфире: G=8п с(2)R/M. 6. Всеми процессами во Вселенной (микромир и макромир) управляет гравитация, представленная четырьмя видами взаимодействия.7. В основе движения всех частицы и тел во Вселенной лежит один закон: силы инерции равны силам гравитации: V2/R=GМ/R.
Подробнее в моей книге «Раскрытие тайн Вселенной». Интернет. И в статьях жур. «Точная наука» и «Мировая наука» за 2018 год.