Для тех, кто только присоединился, я советую начать с первой части или хотя бы с описания волновой модели коры. Наша волновая модель показывает как вызванная активность нейронов коры порождает волны фоновой активности, распространяющиеся как внутри зон коры, так и через проекционные связи по всему пространству
Такой механизм передачи данных можно сравнить с оптическим телеграфом. Еще до изобретения проводного телеграфа для передачи сообщений на большие расстояния использовали системы башен находящиеся в прямой видимости друг от друга. Положением реек в специальной конструкции, установленной на вершине башни, кодировались буквы передаваемого послания. Каждая следующая башня повторяла то, что видела на предыдущей. Теперь представьте, что каждая из семафорных башен не повторяет сигнал, а работает по более хитрому алгоритму. Каждый сигнальщик заводит специальную тетрадь. Когда он видит новый для себя узор из реек он записывает его в тетрадь в первый столбец и ставит ему в соответствие другой случайно выбранный узор, который записывает напротив него во второй столбец. Главное — чтобы этот узор не использовался во втором столбце ранее. Соответсвенно, работа башни превращается в трансляцию одних узоров в другие. При этом соблюдается однозначность такой перекодировки. Сколько бы не было башен на пути сигнала, послание дойдет в информационно-целостном, хотя и перекодированном виде.
А теперь представьте, что башни расположены не в линию, а равномерно покрывают всю землю. Тогда с каждой башни будет видно несколько соседних. Таблицу в тетради сигнальщика придется усложнить. Ему потребуется завести столько столбцов сколько башен он видит плюс свой. В новых условиях задача сигнальщика будет — выставлять свой узор, как только хотя бы на одной из соседних башен появится новое сообщение. После того, как все сигнальщики заполнят свои таблицы, каждой букве будет соответствовать определенная устойчивая картина флажков по всей земле. Достаточно будет на одной из башен установить определенный сигнал, как он распространиться по всему миру.
Вернемся обратно к коре. Судить о том, какие мысли рождает
Более продвинутые методы – это фиксация, например, с помощью магнитно-резонансного томографа, уровня насыщения кислородом кровотока на пространстве коры, что позволяет судить о местах, где сосредоточена наибольшая нейронная активность. Пространственное разрешение при этом во много крат выше, чем при использовании энцефалографа. Для первичной зрительной коры, где сохраняется топографичность проекции, такой метод хоть очень грубо и инерционно, но позволяет заглянуть в мысли человека (рисунок ниже).
Результаты реконструкции изображений (Shinji Nishimoto, An T. Vu, Thomas Naselaris, Yuval Benjamini, Bin Yu, Jack L. Gallant, 2011)
Магнитно-резонансный томограф громоздок и неприменим для внелабораторного использования. Но существует и более простой способ измерения параметров мозгового кровотока – это локальная спектроскопия в инфракрасном диапазоне. Отдельный датчик состоит из источника инфракрасного излучения и оптического приемника отраженного сигнала. По изменению спектра поглощения можно судить о процессах, происходящих непосредственно под датчиком. Используя комбинацию инфракрасных и электроэнцефалографических датчиков, компания Honda создала интерфейс, позволяющий с достаточно высокой точностью управлять человекоподобным роботом (Honda Research Institute Japan Co., 2009).
Комплекс Honda (Honda Research Institute Japan Co., 2009)
Еще большую детализацию активности коры в пространстве и времени позволяют получить упомянутые ранее оптические методы, но и они дают представление только о коллективной активности тысяч расположенных рядом нейронов.
Усреднение активности нейронов по любому участку коры теряет информацию об индивидуальности волнового паттерна. По этой активности можно строить грубые предположения о том, что происходит с
Добраться до непосредственной активности сразу многих нейронов сейчас позволяют методы вживления электродных массивов. В 2004-2005 годах был проделан первый эксперимент по имплантации такого датчика полностью парализованному пациенту. В результате удалось добиться более-менее адекватного управления рукой-протезом (Leigh R. Hochberg, Mijail D. Serruya, Gerhard M. Friehs, Jon A. Mukand, Maryam Saleh,Abraham H. Caplan, Almut Branner, David Chen, Richard D. Penn, John P. Donoghue, 2006) (рисунок ниже).
a) Матрица электродов на одноцентовой монете и вставляемый в череп разъем. b) Массив из ста электродов. с) Расположение массива. d) Первый пациент с установленным интерфейсом (Leigh R. Hochberg, Mijail D. Serruya, Gerhard M. Friehs, Jon A. Mukand, Maryam Saleh,Abraham H. Caplan, Almut Branner, David Chen, Richard D. Penn, John P. Donoghue, 2006)
Массив электродов, использовавшийся в эксперименте, не отличался особой точностью подключения к коре. Только часть электродов фиксировала импульсы отдельных нейронов, остальные передавали суммарную активность нейронных групп. Но даже этого в эксперименте хватило для того, чтобы отфильтровать вполне полезную информацию.
Когда прогресс технологий позволит снять с малой области
Если наша концепция верна, то волновые туннели могут и считывать информацию, и транслировать ее обратно. Для передачи информации от компьютера к человеку можно либо воспроизводить паттерны ранее считанных идентификаторов, либо генерировать уникальные собственные. В последнем случае
Если взять двух людей и подключить их к компьютеру, а затем осуществить с его помощью перекодировку паттернов, переводя узоры, характерные для одного, в узоры, соответствующие тем же понятиям у другого, то получится телепатический интерфейс, та самая корона профессора Казарина из Кира Булычева.
Возможности волнового интерфейса не ограничиваются телепатическим общением человека и компьютера или людей между собой. Если на компьютере воспроизвести кору
Алексей Редозубов (2014)
Предыдущие части:
Часть 1. Нейрон
Часть 2. Факторы
Часть 3. Персептрон, сверточные сети
Часть 4. Фоновая активность
Часть 5. Волны мозга
Часть 6. Система проекций
Автор: AlexeyR