Щуп осциллографа. Устройство и принцип работы

в 14:09, , рубрики: Без рубрики

Эта статья для тех кто всегда хотел знать как устроен щуп осциллографа, но боялся спросить. Для тех кто начинает работать с осциллографом, а также для тех кто много лет работает, но никогда не хватало времени и сил для того, чтобы разобрать как устроен щуп(пробник) осциллографа на самом деле. Этот материал основан на статье Doug Ford «The secret world of oscilloscope probes» с некоторыми изменениями и дополнениями. В статье будут рассматриваться только пассивные щупы. Исследование работы будем проводить в популярном симуляторе электронных схем LTSpice. Разберем последовательно назначение и особенности каждого элемента, моделируя эквивалентные схемы начиная от простых вариантов и переходя к более реалистичным. Узнаем кто изобрёл и запатентовал первый прототип этого устройства в том виде в котором он используется сейчас. А также в конце рассмотрим как устроен реальный щуп фирмы Keysight(бывший Agilent) 10073C, вышедший из строя и давший согласие предоставить свои останки на благо научного прогресса.

Все кто работает в области электроники хоть раз сталкивался с измерением с помощью осциллографа. Существует много разновидностей пробников, в основном они делятся на активные и пассивные. Активные пробники могут быть самого разного устройства и назначения, и в этой статье не рассматриваются. Мы обратим внимание на наверное самый распространенный вариант пассивного пробника с коэффициентом деления равным 10 (либо с переключателем режимов 1 или 10) и входным сопротивлением 10 МОм с учетом входного сопротивления осциллографа 1 МОм. В комплекте осциллографа как правило имеется два таких щупа.

Рассмотрим его устройство. Если поискать в интернете как устроен щуп осциллографа, то чаще всего приводится схема представленная на рисунке 1. Входное сопротивление осциллографа равно 1 МОм. Емкость входа осциллографа как правило составляет от 10 до 30 пФ (мы возьмем 20пФ). Источником сигнала будет генератор с 50-омным выходом нагруженный на резистор
50 Ом. Эквивалентное выходное сопротивление такой схемы будет параллельное сопротивление (Rgen || Rload) = 25 Ом, такой выбор не случаен, о чем еще пойдет речь ниже. Эквивалентная схема щупа представлена как емкость кабеля в виде конденсатора на 100 пФ, наконечника с резистором делителя Rdiv и компенсирующего подстроечного конденсатора Ccomp. Делитель составленный из резисторов Rdiv и Rin образуют коэффициент пробника

frac{Rin}{Rin+Rdiv}=frac{1}{10}

Задача конденсатора Ccomp выровнять частотную характеристику тракта. Для того, чтобы коэффициент оставался 1/10 на всех частотах необходимо, чтобы конденсатор Ccomp равнялся 1/9 суммарной емкости кабеля и входа осц., и таким образом получаем значение

frac{100+20}{9}=13.3,  пФ

Рисунок 1
Рисунок 1
Рисунок 2
Рисунок 2

Другой возможный вариант когда параллельно резистору Rdiv стоит постоянный конденсатор, а подстроечный ставится параллельно входу осциллографа как показано на рисунке 2. Для переключения в режим с коэффициентом 1 резистор Rdiv просто закорачивают. Еще одна возможная конфигурация, показанная на рисунке 3, когда цепь подстройки находится в основании щупа, а не в наконечнике. Такой вариант и будем рассматривать в дальнейшем. Входная емкость такой системы будет определятся как последовательное соединение емкости Cdiv и суммы емкостей Ccable, Ccomp  и Cin  и равняется 13,5 пФ. Именно входная емкость определяет полосу пропускания щупа, точнее она определяется RC цепочкой, составленной из входной емкости и внутреннего сопротивления той части схемы куда приложен щуп. В документации на пробник обычно указывается полоса пропускания, которая нормирована на эквивалентной внутреннее сопротивление источника равное 25 Ом, то есть, если щуп с полосой пропускания в 500 МГц, имеющий входную емкость в районе 12 пФ приложен к высокоомной цепи, например 1МОм, то полоса пропускания уменьшится до 12,5 кГц. В нашем же случае как видно из рисунка 4 штатная полоса пропускания оказалась равной 470 МГц.

Рисунок 3
Рисунок 3
Рисунок 4
Рисунок 4

Посмотрим как влияет изменение ёмкости компенсационного конденсатора Сcomp на частотный отклик. На рисунке 5 показан результат моделирования при изменении емкости от 4 пФ до 24 пФ с шагом 2 пФ. Видно, что искажения начинаются уже с нескольких сотен герц. Правильно подобранная компенсация должна обеспечить ровную частотную характеристику.

Рисунок 5
Рисунок 5

На рисунке 6 влияние емкости Сcomp на форму измеряемого сигнала в виде прямоугольных импульсов. Последняя картинка знакома любому, кто хоть раз сталкивался с калибровкой щупа осциллографа. Осциллографы как правило оснащены внутренним генератором прямоугольных сигналов, который питает «калибровочный» терминал на передней панели. Частота калибровочного сигнала обычно составляет 1 кГц с амплитудой 1 В. Изменяя емкость подстроечного конденсатора в основании можно добиться максимальной «прямоугольности» импульсов, и тем самым максимальной ровности частотного отклика.

Рисунок 6
Рисунок 6

Как правило объяснение работы пассивного пробника на этом заканчивается. Но мы попробуем пойти немного дальше. Основное отличие приведенной схемы от реальной ситуации заключается в том, что кабель аппроксимируется сосредоточенной емкостью только на низких частотах. Для полной картины необходимо изменить модель кабеля с емкости на линию передачи, как показано на рисунке 7. Типичная длинна кабеля щупа равна 1,2 м. Определим погонную емкость из соображения сохранения общей емкости 100 пф, таким образом погонная емкость будет равна 100 / 1,2 = 83,3 пФ/м. Погонную индуктивность найдем из формулы

Z_{0}=sqrt{frac{L}{C}}

 где Zo – волновое сопротивление кабеля – 50 Ом. Таким образом L=2500*83,3 = 208,3 нГн. Вставим полученные значения в нашу модель и построим АЧХ.

Рисунок 7
Рисунок 7
Рисунок 8
Рисунок 8
Рисунок 9
Рисунок 9

Как видно результат оказался чудовищный. На рисунке 8 и 9 представлены частотные характеристики на входе и выходе щупа. Видно, что кроме того, что искажения частотного отклика приняли неприемлемый вид, но и в результате переотражений происходит влияние на измеряемую схему на частотах выше 40 МГц, чем вообще говоря можно повредить устройство. Так происходим из-за несогласованности нагрузки и сопротивления источника с кабелем. Для тех кто не очень знаком с основами передачи сигналов в линиях передачи можно начать ознакомление с этой статьи. А мы пойдем дальше. Так что же делают разработчики пробников осциллографов для решения этой проблемы?

Если вы измерите сопротивление щупа в режиме 1х то увидите, что сопротивление не будет равно нулю. Измеренное сопротивление будет в районе 150-300 Ом. Можно предположить, что в щуп вставлены какие-то последовательные резисторы. Может в этом весь секрет. Давайте вставим в нашу симуляцию пару резисторов. Добавим на входе кабеля резистор 150 Ом, а также на выходе в отсеке регулировки добавим резистор 50 Ом. Результат моделирования показан на рисунке 11.

Рисунок 10
Рисунок 10
Рисунок 11
Рисунок 11

Очевидно, что характеристика стала более плавной, хотя идеальной её по-прежнему трудно назвать. Полезная пропускная способность такой системы не превышает 40МГц. Настройка компенсационного конденсатора мало влияет на частотную характеристику или резонансные эффекты линии передачи. Таким образом, очевидно, что характеристики линии передачи зондирующего кабеля потенциально ответственны за некоторые серьезные ограничения полосы пропускания и частотной характеристики. Итак, в чем секрет дизайна высокочастотных щупов. Как производителям зондов удается добиться максимальной ширины полосы пропускания от зондов? Над этим вопросом думал молодой сотрудник компании Tektronix по имени John Kobbe в 50-е годы 20 века. Пытаясь подобрать размер и положение резисторов для получения гладкой характеристики, он в какой-то момент пришел к выводу, что требуется поставить резистор по середине кабеля. Впрочем, скоро ему пришла идея получше.

Если вы разберете ваш пробник и удалите из него все последовательные резисторы, а потом измерите сопротивление кабеля, то оно про прежнему будет далеко от короткого замыкания. Это происходим от того, что сама центральная жила имеет высокое сопротивление. Именно так поступил John Kobbe. Купив в магазине высокоомную проволоку, он вытащил центральную жилу, заменив ее на проволоку. На рисунке 12 показан кабель щупа в разрезе, видно, что центральная жила гораздо тоньше чем для обычного коаксиального кабеля и смята, что придает в свою очередь больше гибкости пробнику.

Рисунок 12
Рисунок 12

Так, что же это нам даёт? Вернемся к нашей модели и заменим последовательные резисторы на сопротивление потерь в линии передачи (рисунок 13).

Рисунок 13
Рисунок 13
Рисунок 14
Рисунок 14

На рисунке 14 показан волшебный результат: плавный и монотонный отклик без неприятных отражений или аномалий– просто плавный, полезный отклик! Давайте посмотрим, чего мы еще сможем добиться используя этот подход. Рассмотрим как влияет изменение сопротивление центральной жилы на частотный отклик, будем изменять сопротивление от 100 до 200 Ом с шагом 10 Ом.

Рисунок 15
Рисунок 15
Рисунок 16
Рисунок 16

Отсюда подбираем оптимальное сопротивление – примерно 140 Ом и получаем пробник с полосой пропускания более  230 МГц (рисунок 17) , что уже можно назвать неплохим результатом.

Рисунок 17
Рисунок 17

Этим нехитрым изобретением производители пробников пользуются и по сей день. Историю Джона Коббе можно почитать здесь. Подробнее про основы пассивных пробников можно почитать в книжке "Oscilloscope Probe Circuits" JOE WEBER 1969 г. А мы двинемся дальше.

Попробуем ещё немного улучшить нашу модель. Практические конструкции компенсационных схем могут быть самые разные и зависят от производителя. Мы же рассмотрим еще один часто встречающийся приём, а именно последовательно с кондесатором Ccomp поставим дополнительный резистор и будем менять его от 50 до 250 Ом с шагом 10 Ом.

Рисунок 18
Рисунок 18
Рисунок 19
Рисунок 19

На рисунке 19 показан результат моделирования. Как видно можно подобрать оптимальное значение резистора для получения ровной характеристики. В нашем случае это значение получается равным 160 Ом (часто в примерах на этом месте встречается значение 68 Ом). Построим окончательный вариант схемы (рисунок 20).

Рисунок 20
Рисунок 20
Рисунок 21
Рисунок 21

Внедрение правильной схемы компенсации позволило увеличить полосу пропускания до значения 450 МГц! Почти удалось добиться результата моделирования идеальной схемы из рисунка 3. Теперь мы знаем секрет создания пробника. Но, как уже говорилось выше, в реальности все гораздо сложнее и приходится учитывать паразитные составляющие всех элементов схемы.

Далее давайте посмотрим некоторые характеристики нашего новоиспечённого щупа. Рассмотрим время нарастания фронта и задержку распространения. Будем для наглядности сравнивать со схемой из рисунка 10 и схемой из рисунка 16.

Рисунок 22
Рисунок 22

На рисунке 22 показан отклик на прямоугольный импульс 10 В для трех схем, и исходный импульс в уменьшенном масштабе (голубой). Задержка всех моделей оказалась равной примерно 5 нсек. Последний вариант схемы с полосой пропускания 450 МГц (зеленый) показал время нарастания фронта менее 1 нсек, тогда как схема с полосой 230 МГц (красный) показала результат 1,7 нсек. Модель же с последовательными резисторами (коричневый) по длительности фронта не уступает последнему варианту щупа, но создает значительные искажения формы. Наносекундные различия во времени нарастания несущественны, если вы наблюдаете прямоугольный отклик звуковых операционных усилителей с микросекундным временем нарастания, но они становятся жизненно важными, если вы исследуете проблемы в высокоскоростных цифровых схемах.

Полезно также рассмотреть частотную зависимость входного сопротивления (импеданса) пробника.  Как говорилось выше для постоянного напряжения и низких частот пробник x10 имеет входное сопротивление 10 МОм. На следующем рисунке 23, показана зависимость входного сопротивления от частоты. По оси Y указано входное сопротивление в дБ (140 дБ соответствует 10МОм). Видно, что емкость начинает оказывать определяющее воздействие на входной импеданс на высоких частотах, и выше 150 МГц падает до значения менее 100 Ом (40 дБ на графике).

Рисунок 23
Рисунок 23

Рассмотрим также как влияет заземляющая клемма на частотную характеристику. Типичный провод заземления пробника с зажимом составляет около 150 мм в длину. Типичная индуктивность провода составляет около 1 нГн /мм, поэтому заземляющий провод соответствует индуктивности 150 нГн. Так как место крепления заземляющего провода находится на некотором расстоянии от наконечника добавим еще 50 нГн.  Вставим эту индуктивность в нашу модель щупа и посмотрим, как это повлияет на частотную характеристику.

Рисунок 24
Рисунок 24
Рисунок 25
Рисунок 25
Рисунок 26
Рисунок 26

На рисунке 25 и 26 частотная характеристика и фронт отклика во временной области щупа с индуктивностью (зеленый) показана в сравнении с предыдущим вариантом без индуктивности (красный). Характеристика значительно испортилась и стала демонстрировать немонотонность.

Рисунок 27
Рисунок 27

Для измерения сигналов выше десятков МГц в комплекте щупа всегда идут специальные насадки (рисунок 27) для заземления пробника максимально близко к наконечнику щупа во избежание возникновения индуктивных искажений.

Напоследок рассмотрим реально существующий вариант щупа фирмы Agilent (нынешний Keysight) 10073C, который пришел в негодность у меня на работе и был разобран.  На рисунке 28 представлено основание щупа.

Рисунок 28
Рисунок 28

На рисунке 29 воссозданная схема в LTSpice. Сопротивление кабеля отличается от рассмотренных выше и равняется 2,2 МОм. Значения потенциометров, расположенных по бокам могут принимать значения до 500 Ом (R7-R10). Полоса пропускания по спецификации 500 МГц. Значения регулируемых емкостей неизвестно. Параметры используемого кабеля и емкости Сdiv также неизвестно. Со значениями используемыми в этой статье получилось только 426 МГц (рисунок 30).

Рисунок 29
Рисунок 29
Рисунок 30
Рисунок 30

Выводы:

  • Пробники с высокой пропускной способностью спроектированы с использованием тщательно подобранного кабеля линии передачи и с минимизации воздействия сквозных отражений линии передачи.

  • Использование правильной схемы компенсации позволяет в разы увеличить полосу пропускания.

  • Пробник 10х имеет входное сопротивление 10 MОм только  на низких частотах. На более высоких частотах в основном определяется входной ёмкостью.

  • Индуктивность заземляющего провода может разрушить точность формы сигнала и пропускную способность. Используйте комплект насадок из комплекта пробника, чтобы обеспечить низкую индуктивность.


Файлы моделирования можно скачать здесь.

Полезное видео на тему: Eric Bogatin Oscilloscope Basics Session.

Автор:
seryogashvetsov

Источник

* - обязательные к заполнению поля


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js