Эти изображения, полученные с помощью алгоритма искусственного интеллекта под названием XDREAM могут стимулировать определенные нейроны гораздо лучше чем любая естественная картина.
В апреле 2018 года, в Гарвардской лаборатории, обезьяне (по имени Ринго) показывали странные изображения созданные с помощью алгоритма искусственного интеллекта под названием XDREAM (генеративная глубокая нейронная сеть с генетическим алгоритмом). Который постепенно настраивал их для стимуляции одного конкретного нейрона, в
Генетический алгоритм искал варианты стимулов, которые максимизировали нейронный отклик. Что привело к созданию синтетических изображений объектов со сложными комбинациями форм, цветов и текстур. Изображения иногда напоминали животных или людей, а в других случаях обнаруживались новые узоры, которые не соответствовали какой-либо четкой семантической категории.
Изображения XDREAM выглядят как картины Кандинского. Вы вероятно не захотите вешать их на стену. Но каждая из них близка к идеальному стимулу для конкретного нейрона. И вместе они рассказывают нам кое-что интересное о том, как наш
Карлос Понсе (доцент кафедры неврологии Вашингтонского Университета, один из авторов проекта):
«Сначала картины были серыми и бесформенными. Но со временем из этой дымки что-то начало смотреть на нас. Если клетки видят эти изображения — это то, о чем они мечтают. Это раскрывает визуальный словарный запас
Первые намеки на этот словарь появились в 1962 году, когда Торстен Визел и Дэвид Хьюбел показали, что определенные нейроны в зрительных центрах
Маргарет Ливингстон (профессор нейробиологии Гарвардского университета, одна из авторов проекта):
«То, что клетка реагирует на определенную категорию изображений не означает, что вы действительно понимаете чего она хочет».
Так почему бы не спросить нейроны, что они хотят видеть?
Это была идея проекта XDREAM, алгоритма придуманного студентом Гарварда по имени Уилл Сяо. Наборы этих серых, бесформенных изображений были показаны обезьянам и алгоритм подстраивал и перемешивал те, из них, которые вызывали самые сильные отклики в выбранных нейронах, чтобы создать новое поколение изображений. Сяо обучал XDREAM, используя 1,4 миллиона реальных фотографий, чтобы алгоритм генерировал синтетические изображения со свойствами естественных. За 250 поколений нейросети синтетические изображения становились все более и более эффективными, пока они не возбуждали целевые нейроны гораздо интенсивнее чем любое естественное изображение.
Карлос Понсе:
«Было интересно, наконец, позволить клетке сказать нам, что она кодирует, вместо того, чтобы догадываться».
Однако, существовал риск того, что XDREAM может стать подобием теста Роршаха, в ходе которого люди видят то, что они хотят видеть. Для проверки этого команда использовала другой алгоритм, чтобы подтвердить, что синтетические изображения, которые они опознавали как лица действительно больше похожи на реальные лица чем на другие естественные объекты. Они также показали, что нейроны, которые побуждают XDREAM создавать похожие на лица изображения лучше всего реагируют на фотографии настоящих лиц.
Карлос Понсе:
«Эти изображения настолько хороши в стимуляции визуальных нейронов обезьян, что они также щекочут и наш
Маргарет Ливингстон:
«Намекают ли тревожные изображения XDREAM на то, почему так много мифических существ являются преувеличенными версиями знакомых вещей. Зрительные нейроны, похоже, склонны к
преувеличению. Я думаю, что горгульи и гномы, эти архетипы, которые люди воображают… для них есть основа в нашем
(В предыдущих исследованиях ее команда показала, что избирательные к лицам клетки будут сильнее реагировать на карикатуры, чем на реальные лица.)
Помимо странности этих изображений самое удивительное в них заключается в том, что они в основном неузнаваемы. Команда исследовала 46 нейронов у шести обезьян, большинство получаемых изображений были смешением цвета, текстуры и формы, которые не вписывались в очевидные категории.
Лейла Исик (невролог из Университета Джона Хопкинса):
«Поразительно, что клетки, которые, как предполагалось, кодируют простые объекты или части объектов могут, фактически, кодировать гораздо более сложные визуальные стимулы. Некоторые могут счесть неудовлетворительным, что сгенерированные изображения не могут быть легко описаны в терминах семантических категорий. Однако, это «ограничение» может быть просто реальностью сложной природы зрительной коры приматов».
Благодаря этим экспериментам исследователи узнают больше не только о самом
Чтобы выяснить это, Пуя Башиван (из Массачусетского технологического института) использовал нейронную сеть для создания изображений, которые теоретически должны стимулировать конкретную область
Результаты были смешанными. Нейронной сети удалось создать изображения, которые стимулируют определенные нейроны сильнее, чем естественные фотографии. Но они были не так хороши для другой задачи: возбуждать один нейрон, подавляя всех его соседей. Это позволяет предположить, что сеть еще не охватывает все, что можно знать о визуальной системе.
Команда Башивана концентрировалась на регионе
Пуя Башиван:
«Если мы будем следовать только человеческой интуиции мы можем ошибаться. Лучший путь это создание интеллектуальных систем, которые содержат все знания в этой области.»
Карлос Понсе:
«Как биологи, многие из нас, все еще скептически относятся к тому, что современные нейронные сети достаточно похожи на
Автор: dedyshka