Пять открытий фундаментальной физики, оказавшихся полной неожиданностью

в 7:00, , рубрики: Научно-популярное, научный метод, открытия, физика

Пять открытий фундаментальной физики, оказавшихся полной неожиданностью - 1
Hubble Extreme Deep Field — наш самый детальный снимок Вселенной, демонстрирующий галактики, существовавшие в период, когда возраст Вселенной составлял 3-4% от нынешнего. То, что мы смогли увидеть так много, просто достаточно долго изучая казавшийся чёрным участок неба, тоже стало невероятным сюрпризом – но в список он не попал

Изучая метод научного познания, мы представляем себе чёткую процедуру, следуя которой, можно добраться до понимания естественных процессов, происходящих во Вселенной. Начинаем с идеи, выполняем эксперимент, и либо подтверждаем, либо опровергаем её – в зависимости от результата. Вот только реальный мир гораздо более неряшлив. Иногда можно провести эксперимент и получить результат, кардинально отличающийся от ожиданий. Иногда правильно объяснение требует выхода воображения далеко за пределы разумных и логических заключений. Сегодня мы неплохо понимаем Вселенную, но на пути к этому мы встречали множество сюрпризов. Осуществляя дальнейший прогресс, мы наверняка наткнёмся на что-то ещё. Вот исторический экскурс, описывающий пять величайших сюрпризов в истории науки.

Пять открытий фундаментальной физики, оказавшихся полной неожиданностью - 2
Если выстрелить ядром из пушки в направлении, обратном движению автомобиля, и с точно такой же скоростью, в результате скорость снаряда окажется нулевой. Если бы мы выстрелили светом, он всегда двигался бы со скоростью света

1) Скорость света не меняется из-за скорости источника. Представьте, что вы очень сильно бросили мяч. В зависимости от того вида спорта, которым вы увлекаетесь, он может достичь скорости до 45 м/с. Теперь представьте, что вы находитесь в поезде, двигающемся со скоростью 135 м/с. Если вы бросите мяч с поезда в направлении его движения, с какой скоростью он полетит? Просто складываем скорости – 180 м/с. Теперь представьте, что вместо мяча вы испустили луч света. Сложим скорость света и скорость поезда – и получим неправильный ответ.

Пять открытий фундаментальной физики, оказавшихся полной неожиданностью - 3
Интерферометр Майкельсона (вверху) продемонстрировал пренебрежимо малое изменение поведения света (внизу, сплошная) по сравнению с тем, что было бы, если бы сработал закон относительности Галилея (внизу, пунктир). Скорость света оставалась постоянной вне зависимости от направления ориентации интерферометра – включая направление, параллельное или перпендикулярное движению Земли в космосе.

Эта идея была центральной в специальной теории относительности Эйнштейна, но экспериментально её открыл не Эйнштейн; это был Альберт Майкельсон, чья передовая работа продемонстрировала этот результат в 1880-х. Запускаете ли вы луч света в направлении движения Земли, перпендикулярно этому направлению, или в противоположном направлении – разницы нет. Свет всегда движется с одной и той же скоростью: c, скоростью света в вакууме. Майкельсон разработал интерферометр, чтобы измерить скорость движения Земли относительно эфира, а вместо этого проложил дорогу для относительности. Его нобелевская премия 1907 года остаётся самым известным нулевым результатом и самым важным в истории науки.

Пять открытий фундаментальной физики, оказавшихся полной неожиданностью - 4
Атом гелия с ядром в примерном масштабе

2) 99,99% массы атома сосредоточено в невероятно плотном ядре. Слышали ли вы о "пудинговой модели атома"? Сегодня она кажется странной, но в начале XX века считалось общепринятым, что атом состоит из смеси отрицательно заряженных электронов (изюминок), встроенных в положительно заряженное вещество (пудинг), заполняющее всё пространство. Электроны можно вынуть из него, что объясняет явление статического электричества. Годами композитная модель атома Томсона, с небольшими электронами, расположенными на положительно заряженной подложке, была общепринятой. Пока её не решил проверить Эрнест Резерфорд.

Пять открытий фундаментальной физики, оказавшихся полной неожиданностью - 5
Опыт Резерфорда с золотой фольгой показал, что атом по большей части пустой, но в одной его точки имеется концентрация массы, серьёзно превышающей массу альфа-частицы: атомное ядро.

Запуская высокоэнергетические заряженные частицы (от радиоактивного распада) в очень тонкий лист золотой фольги, Резерфорд ожидал, что они будут проходить её насквозь. Большая часть из них так и сделала, но некоторые эффектно отскочили! Как вспоминает Резерфорд:

Это было самое невероятное, что произошло со мной в жизни. Это было почти настолько же невероятно, как если бы вы выстрелили пятнадцатидюймовым снарядом в салфетку, а он бы отскочил от неё и попал в вас.

Резерфорд обнаружил атомное ядро, содержащее практически всю массу атома и ограниченное объёмом в 10-15 от размера всего атома. Так родилась современная физика, проложившая путь квантовой революции XX века.

Пять открытий фундаментальной физики, оказавшихся полной неожиданностью - 6
Два типа (излучающий и неизлучающий) бета-распада нейтрона. Бета-распад, в отличие от альфа- или гамма-распада, не сохраняет энергию – если вы не сможете обнаружить нейтрино.

3) «Недостающая энергия» привела к открытию крохотной, почти невидимой частицы. Во всех наблюдаемых взаимодействиях между частицами энергия всегда сохраняется. Её можно превратить из одного типа в другой – потенциальная, кинетическая, масса покоя, химическая, атомная, электрическая, и т.д. – но её нельзя создать или уничтожить. Поэтому почти сотню лет назад было так удивительно узнать, что у некоторых продуктов радиоактивных распадов получается немного меньше общей энергии, чем у изначальных реагентов. Это привело Бора к мысли, что энергия сохраняется всегда… за исключением тех случаев, когда теряется. Но Бор ошибся, а у Паули появилась другая идея.

Пять открытий фундаментальной физики, оказавшихся полной неожиданностью - 7
Превращение нейтрона в протон, электрон и антиэлектронное нейтрино – решение проблемы несохранения энергии при бета-распаде

Паули спорил, что энергия должна сохраняться, поэтому в 1930-х предположил существование новой частицы: нейтрино. Эта «маленькая нейтронная» частичка не вступала в магнитные взаимодействия, а вместо этого обладала крохотной массой и уносила с собой кинетическую энергию. Многие отнеслись к этому скептически, но в опытах среди продуктов ядерных реакций в 1950-х и 1960-х в итоге были найдены нейтрино и антинейтрино, что помогло привести физиков к Стандартной Модели и модели слабых ядерных взаимодействий. Это яркий пример того, как теоретические предсказания иногда могут привести к потрясающим прорывам, после того, как будут выработаны соответствующие экспериментальные технологии.

Пять открытий фундаментальной физики, оказавшихся полной неожиданностью - 8
Кварки, антикварки и глюоны в Стандартной Модели обладают цветным зарядом – в дополнение к остальным свойствам вроде массы и электрического заряда. Все эти частицы, насколько нам известно, точечные, и распределены по трём поколениям

4) У всех частиц, с которыми мы взаимодействуем, есть нестабильные высокоэнергетические родственники. Часто говорят, что научные достижения обычно встречают не возгласом «эврика», а замечанием «хмм, вот странно…» – но в фундаментальной физике встречался и первый вариант. Если зарядить электроскоп – в котором два проводящих металлических листка соединены с другим проводником – оба листка получат одинаковый заряд и будут отталкиваться. Если поместить его в вакуум, листки не должны терять заряды, но они со временем их теряют. Лучшим объяснением для этого было то, что из внешнего космоса на Землю летят высокоэнергетические частицы, космические лучи, и результат их столкновений разряжал электроскоп.

Пять открытий фундаментальной физики, оказавшихся полной неожиданностью - 9
Астрономия космических лучей зародилась в 1912-м, когда Виктор Гесс отправился на воздушном шаре в верхние слои атмосферы и обнаружил частицы, падающие на Землю из космоса.

В 1912 Виктор Гесс при помощи воздушного шара провёл опыт для поиска этих высокоэнергетических космических частиц, и сразу же обнаружил их в изобилии, став отцом космических лучей. Сконструировав камеру с магнитным полем, можно измерить скорость и отношение заряда к массе на основе закругления пути частицы. Протоны, электроны, и даже первые частицы антиматерии были обнаружены именно так, но крупнейший сюрприз произошёл в 1933-м, когда Пол Кунц, работая с космическими лучами, обнаружил след частицы, очень похожей на электрон, только в сотни раз тяжелее!

Пять открытий фундаментальной физики, оказавшихся полной неожиданностью - 10
Первый из обнаруженных мюонов, вместе с другими частицами космических лучей, оказался обладателем такого же заряда, как у электрона, только с массой в сотни раз больше – это было видно из его скорости и радиуса искривления пути

Существование мюона со временем жизни всего 2,2 мкс позднее было подтверждено на опыте, когда его обнаружили Карл Андерсон и его студент Сет Неддермайер, использовавшие наземную камеру Вильсона. Когда физик Исидор Раби, сам удостоившийся нобелевской премии за открытие ядерного магнитного резонанса, узнал о существовании мюона, он изрёк известную теперь фразу: «А это кто заказал?» Позже было установлено, что как композитные частицы (протоны и нейтроны) так и фундаментальные (кварки, электроны, нейтрино) обладают несколькими поколениями более тяжёлых родственников, и мюон стал первой из открытых частиц «второго поколения».

Пять открытий фундаментальной физики, оказавшихся полной неожиданностью - 11
Чем дальше вы смотрите в пространство, тем дальше вы смотрите во времени. Во времени нельзя заглянуть дальше, чем 13,8 млрд лет: это наша оценка возраста Вселенной. Экстраполяция данных обратно к самым ранним временам привела к появлению идеи Большого взрыва.

5) Вселенная началась с Большого взрыва, но это открытие было сделано совершенно случайно. В 1940-х Георгий Антонович Гамов с коллегами выдвинули радикальную идею: Вселенная, в текущий момент расширяющаяся и охлаждающаяся, в прошлом не только была горячее и плотнее, но была произвольно горячей и плотной. Если экстраполировать назад достаточно далеко, получится Вселенная, достаточно горячая для ионизации всей имеющейся в ней материи, а ещё дальше распадутся даже атомные ядра. Идея получила известность как Большой Взрыв, и из неё вышло два главных прогноза:
1. Во Вселенной, с которой мы начали, должны были находиться не просто протоны и электроны, но целая смесь лёгких элементов, синтезированных вместе при высоких энергиях.
2. Когда Вселенная остыла достаточно для формирования нейтральных атомов, излучение высокой энергии освободилось и вечно путешествует по прямой, пока не наткнётся на что-либо, испытывая красное смещение и теряя энергию при расширении Вселенной.

Они предсказали, что температура этого «реликтового излучения» будет на несколько градусов выше абсолютного нуля.

Пять открытий фундаментальной физики, оказавшихся полной неожиданностью - 12
Согласно первоначальным наблюдениям Пензиаса и Уилсона, в галактической плоскости есть несколько источников излучения (в середине), но сверху и снизу был почти идеально однородный фон

В 1964 году Арно Пензиас и Боб Уилсон случайно открыли остаточное излучение Большого взрыва. Работая с радиоантенной в лабораториях Белла для изучения радаров, они обнаружили наличие равномерного шума, исходящего из всех мест в небе. Это было не Солнце, не Галактика, не атмосфера Земли – но они не знали, что это было. Они чистили поверхность антенны тряпками, разгоняли голубей, но шум никуда не девался. Только когда результаты измерений увидел физик, знакомый с детальными предсказаниями принстонской группы (Дик, Пиблз, Уилкинсон, и т.д.), и с радиометром, который строился как раз для обнаружения подобного сигнала, они поняли значимость того, что обнаружили. Впервые стало известно происхождение Вселенной.

Пять открытий фундаментальной физики, оказавшихся полной неожиданностью - 13
Квантовые флуктуации, присущие космосу, протянулись по всей Вселенной во время космической инфляции, и породили звёзды, галактики и другие крупномасштабные структуры Вселенной, известные нам сегодня. На 2017-й год это наилучшее представление о происхождении структуры и материи Вселенной.

Оглядываясь назад, на собранные к сегодняшнему дню научные знания, на их предсказательные способности и на то, как столетия открытий преобразовали наши жизни, можно поддаться искушению смотреть на науку как на постоянное развитие идей. Но на самом деле история науки неряшлива, полна неожиданностей и отягощена разногласиями. Для работающих на границе современных знаний наука означает риски, изучение новых сценариев, попытки пойти в неизведанном направлении. История, оставшаяся в нашей памяти, полна успехов, но реальная история полна тупиков, неудачных опытов и явных ошибок. Тем не менее, открытый разум, желание и возможность проверять идеи, наша способность учиться на результатах и пересматривать заключения, ведёт нас из тьмы к свету. И в итоге от этого выигрывают все.

Автор: Вячеслав Голованов

Источник

* - обязательные к заполнению поля


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js