Сегодняшние системы с искусственным интеллектом могут разгромить людей-чемпионов в таких сложных играх, как шахматы, го и техасский холдем. В симуляторах полёта они могут сбивать лучших пилотов. Они превосходят людей-докторов в создании точных хирургических стежков и постановке диагнозов рака. Но в некоторых случаях трёхлетний ребёнок легко обставит лучший ИИ в мире: когда соревнование идёт связано с обучением, настолько рутинным, что люди даже не подозревают о нём.
Такая мысль пришла в голову Дэвиду Коксу [David Cox] – нейробиологу из Гарварда, эксперту по ИИ, гордому отцу трёхлетней дочки – когда она, заметив в музее национальной истории длинноногий скелет, показала на него пальцем и сказала: «Верблюд!» Единственная её встреча с верблюдом происходила за несколько месяцев до того, когда отец показывал ей рисованного верблюда в книжке с картинками.
Исследователи ИИ называют эту способность определять объект по единственному примеру «обучением за один раз», и жутко завидуют таким способностям карапузов. Сегодняшние ИИ-системы обучаются совершенно по-другому. Согласно автономной системе обучения под названием «глубинное обучение», программе выдаётся массив данных, из которого нужно делать выводы. Чтобы натренировать ИИ, распознающий верблюдов, система должна переварить тысячи изображений верблюдов – рисунки, анатомические схемы, фотографии одногорбых и двугорбых верблюдов – все изображения с пометкой «верблюд». ИИ потребуются также тысячи других картинок, с пометкой «не верблюд». И когда он прожуёт все эти данные и определить отличительные черты животного, он станет превосходным определителем верблюдов. Но дочка Кокса к тому времени уже успеет перейти на жирафов и утконосов.
Кокс упомянул о своей дочери, объясняя государственную программу США под названием «Машинный интеллект на корковых сетях» [Machine Intelligence from Cortical Networks, Microns]. Его амбициозная цель: провести реверс-инжиниринг человеческого интеллекта так, чтобы программисты смогли создать улучшенный ИИ. Во-первых, нейробиологи должны узнать, какие вычислительные стратегии проходят в сером веществе
Пятилетняя программа, получившая финансирование на сумму $100 млн от Агентства передовых исследований в сфере разведки (IARPA) фокусируется на зрительной коре, части
И хотя в каждой команде Microns работают представители нескольких институтов, большинство из участников команды, работающей под руководством Кокса, ассистент-профессора молекулярной и клеточной биологии и информатики в Гарварде, работает в одном здании на территории Гарварда. Во время прогулки по лаборатории можно наблюдать грызунов, занятых выполнением заданий в «игровом клубе» для крыс; машину, нарезающую
Попробуйте представить эту огромную мощность человеческого
Двухфотонный лазерный микроскоп. Инфракрасный лазер сканирует мозговые ткани живого животного, выполняющего определённую задачу. Когда два фотона одновременно ударяют по нейрону, флуоресцентная метка испускает фотон с другой длиной волны. Микроскоп записывает видео с этими вспышками (вверху). «Можно видеть, как думает крыса», – говорит Дэвид Кокс.
Программисты пытаются эмулировать работу
Нейросети не смогли скопировать анатомический
Ситуация поменялась благодаря недавним технологическим прорывам, позволившим нейробиологам построить карты "коннектома", открывающие множество связей между нейронами. Но Microns нужна не просто статичная диаграмма связей. Команда должна продемонстрировать, как эти связи активируются, когда грызун видит, обучается и вспоминает. «Очень похоже на то, как человек пытается разобраться в работе электронной схемы, – говорит Вогельштейн. – Чип можно разглядывать в подробной детализации, но вы не поймёте, что он должен делать, пока не увидите, как он работает».
Для IARPA реальный результат будет получен, если исследователи смогут отследить схему нейронов, участвующих в распознавании, и перевести её в более похожую на
«Игровой клуб» для крыс Кокса – это небольшая комната, в которой чёрные коробки размером с микроволновку поставлены друг на друга по четыре штуки. В каждой коробке мордой к экрану стоит крыса, а напротив её носа находятся два краника.
В Аргоннской национальной лаборатории синхротрон APS разгоняет электроны и они врезаются в металлическую нить, производя чрезвычайно яркие рентгеновские лучи, фокусирующиеся на небольшом кусочке мозговой ткани. Рентгеновские изображения, сделанные со многих углов, комбинируются для создания трёхмерного изображения, демонстрирующего каждый нейрон, находящийся внутри кусочка.
Нейроны в мозговой ткани
В текущем эксперименте крысы пытаются справиться со сложной задачей. На экране показывают трёхмерные изображения, созданные компьютером. Это не какие-то объекты из внешнего мира, просто комковатые абстрактные формы. Когда крыса видит объект А, она должна лизнуть левый краник, чтобы получить каплю сладкого сока. Когда она видит объект Б, сок будет в правом кранике. Но объекты показываются с разных ракурсов, поэтому крысе нужно будет в уме повернуть каждый объект и решить, относится он к А или к Б.
Тренировочные занятия разбавлены получением снимков, для которых крыс несут по коридору в другую лабораторию, где стоит большой микроскоп, накрытый чёрной тканью, и выглядящий как старомодное фотографическое оборудование. Команда использует двухфотонный лазерный микроскоп для изучения зрительной коры животного, когда она смотрит на экран, где демонстрируются два знакомых объекта А и Б в разных ракурсах. Микроскоп записывает вспышки и свечение, происходящие, когда лазер попадает на активные нейроны, а трёхмерное видео показывает рисунки, напоминающие зелёных светлячков, мигающих в летней ночи. Кокс хочет узнать, как эти рисунки меняются, когда животное становится экспертом в данной задаче.
Разрешение микроскопа недостаточно хорошее, чтобы увидеть аксоны, соединяющие нейроны друг с другом. Без этой информации учёным не определить, как один нейрон активирует следующий для создания контура обработки информации. Для этого животное нужно убить, а
Исследователи вырезают крохотный кубик из зрительной коры, который FedEx доставляет в Аргоннскую национальную лабораторию. Там ускоритель частиц использует мощное рентгеновское излучение для построения трёхмерной карты, показывающей отдельные нейроны, другие типы клеток
Затем кусочек
Каждое изображение напоминает разрез куба из плотно упакованных спагетти. Система программной обработки изображений собирает ломтики по порядку и отслеживает каждую нить спагетти, идущую от одного ломтика до другого, делая наброски полной длины аксона каждого из нейронов вместе с его тысячами связей с другими нейронами. Но ПО иногда теряет нить или путает одну с другой. Люди лучше компьютеров справляются с такой задачей, говорит Кокс. «К несчастью, для обработки такого количества данных не хватит людей всей Земли». Программисты из Гарварда и MIT работают над задачей отслеживания, которую им необходимо решить для построения точной диаграммы структуры
Наложив эту диаграмму на карту активности
Ещё одна сложная проблема, стоящая перед командой Кокса – это скорость. В первой фазе проекта, закончившейся в мае, каждой команде нужно было показать результаты исследования кусочка мозговой ткани размером в 100 кубических микрометров. С таким уменьшенным кусочком команда Кокса завершила этап с электронной микроскопией и реконструкцией за две недели. Во второй фазе командам нужно научиться обрабатывать кусочки такого же размера за несколько часов. Масштабирование от 100 μм3 to 1 мм3 приводит к увеличению объёма в тысячу раз. Поэтому Кокс одержим автоматизацией каждого шага процесса, от тренировок крыс с видео до отслеживания коннектома. «Эти проекты IARPA заставляют научные исследования походить на работу инженеров, – говорит он. – Нам нужно очень быстро вращать заводной ручкой».
Ускорение экспериментов позволяет команде Кокса проверять больше теорий, связанных со структурой
Одна из областей исследований включает правила обучения
IARPA надеется, что открытия будут применимы не только к компьютерному зрению, но и к машинному обучению в целом. «Мы все тут действуем наудачу, но наша удача подкреплена доказательствами», – говорит Кокс. Он отмечает, что кора головного
А пока команда Кокса вращает заводную ручку, пытаясь заставить испытанные процедуры работать быстрее, другой исследователь из Microns занимается радикальной идеей. Если она сработает, как говорит Джордж Чёрч, профессор из гарвардского Института вдохновлённых биологией технологий им. Уисса, она может произвести революцию в науке о
Чёрч руководит командой Microns совместно с Тай Синг Ли из Университета Карнеги-Мэлон в Питсбурге. Чёрч отвечает за разметку коннектома, и его подход разительно отличается от других команд. Он не использует электронный микроскоп для отслеживания аксонных связей. Он считает, что эта технология слишком медленная и производит слишком много ошибок. Он говорит, что при попытке отследить аксоны в кубическом миллиметре ткани ошибки будут накапливаться и загрязнять данные коннектома.
Метод Чёрча не зависит от длины аксона или размера исследуемого кусочка
Чёрч и его коллега Энтони Задор, профессор нейробиологии в Лаборатории Колд-Сприн-Харбор в Нью-Йорке, доказали в предыдущих экспериментах, что технологии баркодирования и секвенирования работают, но пока ещё не собрали данные в цельную карту коннектома, нужную для работы над проектом Microns. Если команде удастся это сделать, Чёрч говорит, что Microns станет только началом его попыток построения карты
Карта участка
Секвенирующая машина
Такие крупномасштабные карты могут способствовать появлению новых идей для разработки ИИ, досконально эмулирующих биологический
Чёрч прикидывает, что проект Microns по реверс-инжинирингу
Автор: SLY_G