В последние несколько лет курсы по Data Science стали, наверное, самыми популярным направлением онлайн-образования: десятки предложений можно найти на Coursera, edX, а для освоения анализа данных на базовом уровне появились даже специальные проекты, посвященные лишь этой дисциплине (например, DataCamp). В этой подборке мы собрали самые интересные курсы по Data Science на различных платформах. Для вашего удобства мы внимательно изучили отзывы – как на сайтах самих образовательных провайдеров, так и на сторонних порталах, где оцениваются преимущества и недостатки тех или иных курсов и специализаций. Поскольку количество курсов огромно, мы сделали акцент на тех, что предлагают научить слушателя целому комплексу навыков – например, в случае Coursera речь пойдет не об отдельных курсах (даже в области Data Science их число приближается к сотне, а содержание многих дублирует друг друга), а о специализациях.
Coursera
В последнее время значительная часть новых курсов на Coursera появляется в формате «специализаций» — программ из 5-10 предметов, после окончания которых можно получить сертификат, за который, впрочем, придется заплатить. Доступ к материалам курсов без оплаты и получения сертификата зависит от университета-организатора (зачастую бесплатно смотреть лекции можно, а вот проходить оцениваемые задания – нельзя).
Statistics with R Specialization
Неплохой курс для новичков: если вы вдруг решили заняться Data Science, но совсем забыли статистику (или никогда не изучали ее), то специализация может послужить неплохим введением в предмет, а также дать базовые представление об R. Никаких предварительных знаний не требуется, но если вы разбираетесь в теме, то вряд ли обнаружите что-то новое для себя.
- Introduction to Probability and Data
- Inferential Statistics
- Linear Regression and Modelings
- Bayesian Statistics
- Statistics with R Capstone
Data Science Specialization
Не самая удачная из специализаций Coursera: новички критикуют ее за не слишком понятные инструкции, а те, у кого уже есть определенный опыт – за отсутствие по-настоящему нового и интересного материала.
Курсы:
- The Data Scientist's Toolbox
- R Programming
- Getting and Cleaning Data
- Exploratory Data Analysis
- Reproducible Research
- Statistical Inference
- Regression Models
- Practical Machine Learning
- Developing Data Products
- Data Science Capstone
Machine Learning Specialization
Эта специализация среднего уровня: от слушателей ожидаются базовые знания университетской математики, а также опыт программирования в Python. В специализацию включены только четыре курса, но каждый из них потребует 5-7 недель занятий.
Курсы:
- Machine Learning Foundations: A Case Study Approach
- Regression
- Classification
- Clustering & Retrieval
Big Data Specialization
Значительная часть прошедших этот курс не рекомендуют его ни новичкам, ни тем, кто уже имеет опыт в Data Science: материал представлен не очень удачно, а обратная связь с преподавателями почти не работает. Просмотреть материалы курса можно, но вот от оплаты сертификата лучше воздержаться.
Курсы:
- Introduction to Big Data
- Big Data Modeling and Management Systems
- Big Data Integration and Processing
- Machine Learning with Big Data
- Graph Analytics for Big Data
- Big Data Capstone
Data Mining Specialization
Не все курсы этой специализации одинаково удачны, однако в целом это достаточно добротная специализация среднего уровня сложности. Предполагается, что слушатели уже умеют программировать и знакомы со статистикой на базовом уровне.
Курсы:
- Data Visualization
- Text Retrieval and Search Engines
- Text Mining and Analytics
- Pattern Discovery in Data Mining
- Cluster Analysis in Data Mining
- Data Mining Capstone
Data Analysis and Interpretation Specialization
Еще одна специализация начального уровня. От вас не требуется никаких базовых знаний, поэтому большинству читателей курс покажется слишком легким. Тем не менее, в качество вводного курса эта специализация – вполне удачный выбор.
- Data Management and Visualization
- Data Analysis Tools
- Regression Modeling in Practice
- Machine Learning for Data Analysis
- Data Analysis and Interpretation Capstone
Udacity
Ключевая идея больших курсов (nanodegree) Udacity – связь с рынком труда. Курсы создаются вместе с ведущими представителями индустрии, а при оплате специальной подписки Udacity даже гарантирует вам работу – или возврат денег. Стоит отметить, что nanodegree от Udacity довольно недешевые от 200 долларов в месяц.
Machine Learning Engineer Nanodegree
Объемный курс по машинному обучению, который продлится около 12 месяцев. Обучение строится на основе проектов, где вы выполняете какую-то реальную (или приближенную к реальности) задачу. Курсы – скорее дополнение к этим проектам, где вы можете получить недостающие знания. Предполагается, что перед началом курса вы уже знаете Python, а также статистику, линейную алгебру и математический анализ на уровне первых курсов университета.
Data Analyst Nanodegree
Структура nanodegree по анализу данных аналогична тому, что мы описывали выше – здесь тоже есть несколько проектов, над которым вы будете работать в течение года (например, визуализация данных или работа над A/B тестами). Несмотря на то, что от слушателей требуются навыки программирования и базовые знания статистики, курс можно назвать скорее вводным – рассматривается не так уж много тем, хотя слушатели отмечают, что материал в целом преподносится довольно качественно.
edX
Еще одна платформа, похожая по формату на смесь Coursera и Udacity – здесь курсы создают университеты в партнерстве корпорациями. Micromasters – аналог специализаций – включают 4-5 курсов.
Data Science
Micromaster по анализу данных от университета Сан-Диего предлагает достаточно стандартную программу из четыре курсов:
- Python for Data Science
- Statistics and Probability in Data Science using Python
- Machine Learning for Data Science
- Big Data Analytics Using Spark
Одно из существенных отличий программы – возможность продолжить образование в реальном университете. В случае успешного окончания курса можно подать документы на программу Master of Predictive Analytics в Curtin University: пройденные на edX курсы зачтут как четверть необходимых для получения диплома кредитов.
Автор: StudyQA