Высокопроизводительные вычислительные системы уже находят применение для памяти с высокой пропускной способностью (HBM) и технологии Hybrid Memory Cube (HMC). В этом направлении активно ведутся разработки.
Ученые из Болонского университета в конце января представили архитектуру для вычислений в памяти (PIM), способную эффективно работать с глубокими свёрточными нейронными сетями. Она получила название Neurostream.
/ фото Ryan McMinds CC
Дизайн базируется на перспективном типе компьютерной оперативной памяти HMC (Hybrid Memory Cube), который в рамках проекта получил название Smart Memory Cube, или SMC. Решение дополняется многоядерной PIM-платформой NeuroCluster.
NeuroCluster имеет модульный дизайн, основанный на сопроцессорах для вычислений с плавающей точкой NeuroStream и RISC-V. Интересно то, что только 8% кристаллов HMC используются для достижения производительности 240 гигафлопс при энергопотреблении в 2,5 ватта.
«Кубы памяти» обладают очень маленьким энергопотреблением, но способны справляться с задачами для свёрточных сетей, — говорится в статье ученых из университета. — Это позволяет высвободить ресурсы компьютерной логики для обработки другой нагрузки».
Небольшое увеличение энергопотребления системы и незначительный рост занимаемого пространства при масштабировании делают эту PIM-систему затрато- и энергоэффективной, которая может быть легко расширена до 955 гигафлопс при включении четырех SMC.
Ученые сравнили возможности нового решения с вычислительными мощностями GPU Nvidia Tesla K40. Tesla K40 оказался способен реализовать 1092 гигафлопс при энергопотреблении 235 ватт. Технология NeuroGrid достигла 955 гигафлопс при мощности 42,8 ватта — энергоэффективность в 4,8 раза выше, чем у GPU.
Изображение: SMC-сеть и блок-схема одного из «кубов»
Более того, создатели Neurostream ожидают, что энергоэффективность может быть повышена с помощью программных решений, а также выполнения арифметических операций пониженной точности. По уверениям ученых, это может снизить энергопотребление на 70%. Подробнее о решении можно прочитать в статье сотрудников Болонского университета.
Далее, в своей работе исследователи планируют изучить возможности реализации системы с четырьмя блоками NeuroCluster, которые будут использоваться для мониторинга процесса обучения сетей.
P.S. А вот о чем еще мы пишем в блоге нашего проекта 1cloud:
- Как сейчас используют нейросети: от научных проектов до развлекательных сервисов
- Немного о VPN: Краткий обзор программных реализаций
- Как обезопасить Linux-систему: 10 советов
- Подборка материалов об облаках, дата-центрах и разработке сервисов
- Как узнать, из чего состоит SSL-сертификат?
- Тренды облачной безопасности
Автор: 1cloud.ru