Недавно на Geektimes был обзор про модули ITEAD TH10.
Хочу поделиться опытом разработки собственной прошивки для этих устройств.
SONOFF — серия выключателей, розеток и других приборов категории «Интернета вещей» от компании ITEAD. Их характеризует довольно низкая цена, использование «народного WiFi модуля» ESP8266 и работа в собственном сервисе, расположенном в облаке Amazon AWS global server.
Для этих модулей есть сторонние прошивки. Например, MQTT OTA, собираемой с ESP SDK или тоже самое но в среде Arduino IDE
Я хочу поделиться опытом создания собственной прошивки на Sonnoff в среде Ardiono IDE.
Модули Sonoff мне понравились сразу.
Начиная от упаковки
внешнего вида
качественной сборки и пайки
и заканчивая проработанной схемотехникой, в которой явно не пожалели транзисторов для управления нагрузкой, подтягивающих и согласующих резисторов и кондеров.
Поддержкой же и документацией своих устройств компания ITEAD может заткнуть за пояс многих именитых производителей, не утруждающих себя публикацией технических подробностей на свои железки. Да и список продуктов компании ITEAD вполне впечатляет
По сути своей Sonoof TH10/16- это ESP8266 с сетевым блоком питания, периферией в виде реле, светодиодов, датчиков температуры и влажности, с колодкой подключения и в приличном корпусе.
Я опущу описание, как подключить Sonoff к облачному сервису и управлять приложением eWeLink на смартфоне. На мой взгляд, полностью неприменимо, когда управление контроллерами зависит от интернета и учетной записи в каком то облаке, пусть и на амазоновских серверах. Поэтому оставим приложение eWeLink для демонстрации возможности Sonoff и напишем свою управляющую программу.
Для этого нужно впаять 4-х штырьковый разъем для подключение к USB/TTL конвертеру.
Имея негативный опыт перепрошивки Sonoff POW, очень рекомендую все работы по программированию проводить с отключенной силовой частью Sonoff и питанием через штырек 3.3В.
Последний USB/TTL у меня героически погиб вместе с модулем Sonoff POW, поэтому использую для подключения Arduino UNO с RESETот подтянутым к земле. 3.3-вольтовый стабилизатор Уны отлично справляется с нагрузкой в виде ESP8266 и всей периферии модуля.
Как среду разработки буду использовать Arduino IDE и за легкости установки и обилия готовых библиотек и примеров, хотя как программист со стажем по прежнему считаю, что для разработки программ любой сложности вполне достаточно VI и make ))).
Как устанавливать ESP8266 Cire for Arduiono IDE посвящено много материалов в интернете. От себя хочу рекомендовать версию Arduino IDE 1.6.5, как имеющую меньше всего глюков при работе с ESP.
Так как на плате установлена микросхема памяти на 1Байт, выбираем соответствующую конфигурацию при загрузке в Board Manager
Теперь достаточно нажать кнопку контроллера Sonoff и передернуть питание, устройство переходит в режим загрузки прошивки.
Для того чтобы самому программировать контроллер, нужно понимать, к каким портам что подключено. Для этого можно воспользоваться схемой на сайте ITEAD, ссылку на которую я приводил выше и тестером.
Итак, что мы имеем
GPIO0 — кнопка (это понятно, когда мы включали бутлоадер)
GPIO12 — красный светодиод и реле
GPIO13 — синий светодиод
GPIO14 и GPIO4 выведены на разъем подключения датчиков.
Причем оба датчика однопроводные и используют GPIO14
GPIO4 еще нужно включить перемычкой на плате
Да. Не густо, хотя и больше чем у ESP01
GPIO2 и GPIO15 имеют подтягивающие резисторы на плате, можно подпаяться к ним.
GPIO5 и ADC вообще никуда не распаяны и нужно подключаться прямо к микросхеме ESP. Оставим эти четыре вывода в покое и приступим к программированию
/**
* Прошивка SONOFF TH10/16
* Copyright 2016 Алексей Шихарбеев
* http://samopal.pro
*/
#include <arduino.h>
uint8_t PIN_RELAY = 12;
uint8_t PIN_LED2 = 13;
void setup() {
pinMode(PIN_RELAY,OUTPUT);
pinMode(PIN_LED2, OUTPUT);
}
Светодиоды работают в противофазе. Синий загорается, когда на нем низкий уровень. Реле срабатывать не должно из за отсутствия питания 5В.
В дальнейшем я буду использовать синий светодиод для отображения различных режимов. Подробно про это я написал в этой статье
На кнопке я подробно останавливаться не буду. Да управления кнопками я написал удобную библиотеку, которая отлавливает длинное и короткое нажатие, автоповторение при длинном нажатии и давит дребезг контактов. Все это я подробно описал в своем блоге.
Теперь сенсоры. Мне прислали датчик температуры/влажности AM2301 и датчик температуры DS18B20 в водонепроницаемом исполнении.
AM2301 совместим с сенсором DHT21. Для его работы нужна библиотека DHT. Форков библиотеки DHT существует великое множество, я рекомендую брать версию от Adafruit в которой есть автонастройка на частоту контроллера и которая корректно работает на ESP8266.
/**
* Прошивка SONOFF TH10/16
* Copyright 2016 Алексей Шихарбеев
* http://samopal.pro
*/
#include <arduino.h>
// DHT от Adafruit
// https://github.com/adafruit/DHT-sensor-library
#include <DHT.h>
uint8_t PIN_DHT = 14;
DHT dht(PIN_DHT, AM2301);
void setup() {
// Последовательный порт для отладки
Serial.begin(115200);
Serial.printf("DHT init ...");
dht.begin();
}
void loop() {
delay(1000);
Serial.print("Temperature=");
Serial.print(dht.readTemperature(),1);
Serial.println(" C");
Serial.print("Humidity=");
Serial.print(dht.readHumidity(),0);
Serial.println("%");
}
Для подключения DS18B20 нужна библиотека OneWire. Полностью совместима с ESP мультиплатформенная версия этой библиотеки
Алгоритм опроса датчика берем из примера
/**
* Прошивка SONOFF TH10/16
* Copyright 2016 Алексей Шихарбеев
* http://samopal.pro
*/
#include <arduino.h>
// Мультиплатформенная библиотека
// https://github.com/PaulStoffregen/OneWire
#include <OneWire.h>
#define ERROR_VALUE 2147483647
float GetDS18X20();
uint8_t PIN_DS = 14;
OneWire ds(PIN_DS);
void setup() {
// Последовательный порт для отладки
Serial.begin(115200);
Serial.printf("DS18B20 init ...");
}
void loop() {
delay(1000);
float t = GetDS18X20();
if( t!= ERROR_VALUE ){
Serial.print("Temperature=");
Serial.print(t,1);
Serial.println(" C");
}
}
/**
* Опрос датчика температуры
*/
float GetDS18X20(){
byte i;
byte present = 0;
byte type_s;
byte data[12];
byte addr[8];
float celsius;
if ( !ds.search(addr)) {
// Serial.println("DS18B20: No more addresses.");
ds.reset_search();
delay(250);
return ERROR_VALUE;
}
if (OneWire::crc8(addr, 7) != addr[7]) {
// Serial.println("DS1820: CRC is not valid!");
return ERROR_VALUE;
}
// the first ROM byte indicates which chip
switch (addr[0]) {
case 0x10:
type_s = 1;
break;
case 0x28:
type_s = 0;
break;
case 0x22:
type_s = 0;
break;
default:
// Serial.println("Device is not a DS18x20 family device.");
return ERROR_VALUE;
}
ds.reset();
ds.select(addr);
ds.write(0x44, 1); // start conversion, with parasite power on at the end
delay(1000); // maybe 750ms is enough, maybe not
// we might do a ds.depower() here, but the reset will take care of it.
present = ds.reset();
ds.select(addr);
ds.write(0xBE); // Read Scratchpad
for ( i = 0; i < 9; i++) { // we need 9 bytes
data[i] = ds.read();
}
// Convert the data to actual temperature
// because the result is a 16 bit signed integer, it should
// be stored to an "int16_t" type, which is always 16 bits
// even when compiled on a 32 bit processor.
int16_t raw = (data[1] << 8) | data[0];
if (type_s) {
raw = raw << 3; // 9 bit resolution default
if (data[7] == 0x10) {
// "count remain" gives full 12 bit resolution
raw = (raw & 0xFFF0) + 12 - data[6];
}
} else {
byte cfg = (data[4] & 0x60);
// at lower res, the low bits are undefined, so let's zero them
if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms
else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
//// default is 12 bit resolution, 750 ms conversion time
}
celsius = (float)raw / 16.0;
return celsius;
}
Ну вот, периферия работает. Дальше я использую существующие свои наработки. Полностью всю прошивку можно взять отсюда
Особенности прошивки:
- Автоматическое определение сенсоров AM2301 и DS18B20
- Длинное нажатие кнопки — вкл/откл режима точки доступа
- Короткое нажатие кнопки — вкл/откл реле
- Синий светодиод горит — соединение установлено, двойная вспышка — нет подключения, одинарное мигание — режим точки доступа
- Локальный WEB-сервер в режиме точки доступа 192.168.4.1
- при подключении к WiFi по тому IP адресу который настроен
- Авторизация доступа по паролю. По умолчанию admin/12345
- Сохранение параметров на сервер в интернете обычным HTTP запросом. Можно настроить любой сервер, например, народный мониторинг. А можно и локальный без всякого интернета.
- Сохранение настроек в EEPROM
- При подключении к интернету установка времени по NTP
Для любителей готовых сервисов. легко прикручивается готовая библиотека MQTT, BLYNK И пр. Но это уже за пределами данной статьи.
Итог
SONOFF — это удобная платформа в первую очередь для тех, кто может самостоятельно разрабатывать и дорабатывать управляющие программы.
Тем кто знаком с ESP8266 — Sonoff это экономия на сборке, пайке и деталях, при условии, что вам нужна именно такая конфигурация устройства, как заложена в конкретном модуле Sonoff.
Самый большой недостаток данных модулей то, что часть GPIO не разведены на разъемы. Ну что стоит сделать компании ITEAD гребенку с 8 pin и завести туда все свободные GPIO от ESP. Я думаю, популярность бы таких модулей при существующей цене сильно бы выросла.
Что касается конкретных применений, такой контроллер вполне можно реализовать на модуле Sonoff TH10.
Автор: sav13