Несмотря не то, что не так давно проскакивали довольно неплохо написанные статьи о расчете трансформатора импульсного источника питания, я предложу вашему вниманию свою методику, и не просто голую методику, а максимально прозрачное описание принципов, в ней использующихся.
Картинок не будет, будет около 18 несложных формул и много текста. Всех желающих приобщиться прошу на борт!
Я хочу поведать вам о том, как расчитать такого хитрого зверя, как импульсный трансформатор обратноходового источника питания. Обратноходовик, или FlyBack — это, наверное, самая популярная топология импульсного преобразователя. По моему мнению, в ИИП есть два очень важных и тонких момента — это трансформатор и петля обратной связи. В данной статье я хочу показать один из возможных наборов несложных математических уравнений, решая которые мы можем получить данные вполне реального трансформатора для флайбэка.
В интернете, в различных авторских статьях, или в AppNotes различных производетелей, можно найти различные методики расчета, которые зачастую максимально «сжаты», так, что из формул совершенно не понятно, как они получается. Я хочу сделать упор не на точность, а на максимальную наглядность и прозрачность производимых расчетов, так чтобы вы поняли, «почему так».
Далее постараюсь писать кратко и емко, так, чтобы вы смогли сесть и посчитать сразу после прочтения статьи. Эпюры напряжений и токов в обратноходовом источнике рисовать не буду, считаю, что вы достаточно подготовлены для того, что бы такие термины, как «индуктивность рассеяния», «отраженное напряжение», «пиковое значение тока через силовой ключ», «размагничивание магнитопровода» вам понятны.
Итак, считать будем трансформатор обратноходового источника питания, без корректора коэфициента мощности, как наиболее распространенный, да и «расчётка» моя пока только под него заточена.
Отдельно сделаю примечание, что подразумевается т.н. квазирезонансный режим работы преобразователя, когда накачка энергии в трансформатор начинается сразу после полного размагничивания магнитопровода. Т.е. т.н. «коэффициент безразрывности тока» =1, т.е. как только вся энергия вытекла через вторичную обмотку(и рассеялась в снабберной цепи), сразу включаем ключ и накачиваем снова. Такой режим в последнее время очень популярен в обратноходовых источниках питания, т.к. позволяет чуток поднять КПД.
Заранее оговорюсь — нижеприведенная методика весьма груба, но она «железобетонно» работает, многократно проверена на реальных трансформаторах в реальных источниках питания.
Для начала скачайте расчетку, откройте, пробегитесь глазами. В нее уже «вбиты» значения для расчета трансформатора источника питания, с выходной мощностью 100Вт.
Расчетка:
Итак, поехали. Для того, чтобы начать расчет нам потребуется задаться несколькими исходными параметрами (все они выделены зеленым цветом в расчетке), а именно:
1. Выходная мощность источника питания для которого делаем трансформатор (POUTmax).
2. Выходное напряжение источника (Uout)(1).
3. Выходное напряжение служебной обмотки (Ubias)(2).
4. Минимальное напряжение питающей сети (UACmin)(3).
5. Максимальное напряжение в сети (UACmax)(3).
6. Уровень пульсаций на фильтрующем конденсаторе сетевого выпрямителя (Urpl)(4).
7. Ожидаемый КПД трансформатора (берите 0,85 и не прогадаете) (ŋ).
8. Частота работы преобразователя (5).
9. Пиковое значение тока протекающего через ключ коммутирующий первичную обмотку (ILPRpeak) (6).
(1) Если выходные напряжения достаточно низкие- учитывайте прямое падение напряжения на диоде.
(2) В подавляющем большинстве конструкций источников питания, требуется третья обмотка, от которой будет питаться управляющая микросхема.
(3) Всегда берите с запасом, т.е. если указан диапазон 180-264, берите от 160 до 280.
(4) Этот параметр зачастую можно только угадать, берите 10% от постоянной составляющей на нем и не ошибетесь, по факту полученного рабочего прототипа «подрихтуете» расчет.
(5) Частота к преобразователях с ожиданием размагничивания сердечника- плавающая, берем «с потолка» такую, которую хотим получить при полной нагрузке.
(6) Я надеюсь вы в курсе, что форма тока треугольная, что коммутирует ключ, что такое ключ и т.п.
Итак, первая формула:
Lpr=(1000×2×POUTmax)/(ŋ×F×ILPRpeak^2 ) (1)
Для упрощения я выкину КПД, и множитель 1000, который нужен только для приведения результата к микроГенри от Генри, получится нижеследующее уравнение:
Lpr=(2×POUTmax)/(F×ILPRpeak^2 ) (1.1)
На первый взгляд совершенно непонятно как так получается. Давайте попробуем ее преобразовать. Перенеся множители справа-налево, получим.
(Lpr×ILPRpeak^2)/2=POUTmax/F (1.2)
Преобразуем правую часть, получим:
(Lpr×ILPRpeak^2)/2=POUTmax×T (1.3)
Итак, в левой части у нас энергия содержащаяся в индуктивности (учебник физики, если не понятно). В правой части имеем мощность которая расходуется за период работы преобразователя. Т.е. энергия запасенная в индуктивности первичной обмотки (на этапе накачки, от начала периода до размыкания ключа) равна мощности передаваемой в нагрузку за весь период T (от начала накачки, до полного исчерпания энергии в трансформаторе и начала нового импульса).
В установившемся режиме то, что закачали в трансформатор из сети, должно равняться тому, что слили в нагрузку. Т.е. все рассуждения предполагают, что наш источник уже работает, а не стартует.
Оставим-же пока эту формулу (1), мы потом воспользуемся ею в расчётке, я лишь хотел продемонстрировать как она так получается.
Теперь о параметрах. Присмотримся к формуле. Зафиксировав (выбрав на свое усмотрение) три из четырех неизвестных, мы можем получить значение четвертой.
Мощность (POUTmax), мы уже задали.
Частота, ее можно просто выбрать по своему желанию. Не мудрствуя лукаво тыкнем скажем 50кГц и не проиграем. Лезть за 150кГц не стоит, так как потери на переключение станут неоправданно высокими, да еще скинэффект, не нужно это нам во флайбэке.
Пиковое значение тока через первичную обмотку, и одновременно ключ- ILPRPeak, это параметр на нервах которого мы будем играть. Выбирая его значение ILPRPeak, мы изменяем Lpr, а вместе с ней еще много чего другого. В моей расчетке будем менять ILPRpeak и наблюдать за другими ячейками таблицы, в которых будут находится результаты других формул. Опять-же, ближе к реальности, для 100Вт источника можно задаться для начала ILPRpeak= 3…4A.
Просто попробуйте подставить в ячейку различные числа, и вы увидите, как изменятся другие производные параметры. В частности, выбирая пиковый ток «первички», мы смотрим на «отраженное» напряжение, и исходим из соображений наличествующих у нас ключей. Так же этот параметр влияет на пиковое значение тока «вторички», что тоже важно, ибо во флайбэках токи имеют форму прямоугольного треугольника, и пиковые значения в разы превышают действующие, т.е. если ток нагрузки 5А, то пиковое может быть и 50, ориентируйтесь на наличествующие диоды и потери в меди обмотки.
Вторая формула:
UDCmin=UACmin×1.41-Urpl (2)
Тут упрощать нечего, думаю понятно, что мы получаем самое худшее значение постоянного напряжения, с учетом просадки на буферном конденсаторе, что стоит за сетевым выпрямителем, или за ККМ.
Ton=(Lpr×ILPRpeak)/UDCmin (3)
В формуле (3) мы вычисляем, сколько времени должен быть открыт ключ, чтоб ток в индуктивности, при приложении к ней нашего самого худшего UDCmin вырос от нуля до желаемого ILPRpeak.
T=1/F×1000 (4)
Частотой мы задались ранее, период посчитали в (4). На 1000 умножаем потому, что желаемую частоту мы записали в кГц а не в 1000-х Герц.
Toff=T-Ton (5)
Оставшаяся часть периода, которая будет посвящена передаче энергии в нагрузку, вычисляется по формуле (5).
Q=Toff/Ton (6)
Максимальный коэффициент заполнения для худшего напряжения в сети и максимальной просадки на фильтрующем конденсаторе вычисляем в (6).
Urv=UDCmin×Ton/Toff (7)
«Отраженное» напряжение. Наш трансформатор, хоть и обратноходовый, но таки трансформатор, а значит коэффициент трансформации к нему так-же применим. Если на нашей вторичной обмотке во время протекания тока через выпрямительный диод, апряжение (например) 12.7В, то через соотношение количества витков это напряжение трансформируется в первичную обмотку (ведь магнитный поток «омывает» одновременно все обмотки).
Формула (7), немного хитрая, попробуем ее «раскрутить». Получим:
UDCmin×Ton=Urv×Toff (7.1)
(7.1) Демонстрирует один очень важный момент, называемый в народе «равенство вольт*секундных интервалов». Возможно справедливость утверждения (7.1) не очевидна, или не сразу понятна, пока используем полученное с помощью (7) численное значение как есть, в его правомерности не сомневайтесь.
UVTmax=UACmax×1.41+Urv (8)
Надеюсь вы хорошо понимаете, что на обратном ходу, первичная обмотка, для постоянного напряжения, что на фильтрующем конденсаторе- просто кусок проволоки, т.е. если наш фильтрующий конденсатор все еще заряжен до 310В, то при разомкнутом силовом ключе, протекании тока через вторичную обмотку, постоянка попросту «проходит» через первичку и прикладывается к ключу, но вместе с ней, к ключу добавляется еще отраженное напряжение. И самое печальное, что оно суммируется с постоянкой. И это без учета выброса от индуктивности рассеяния, имейте это ввиду, в расчетке данное обстоятельство специально выделено красным шрифтом.
Тогда (8) показывает, какое напряжение будет приложено к силовому ключу на обратном ходу. Можно сразу прибавить к максимальному напряжению, на которое расчитан ключ, еще сверху вольт этак 200 и не ошибетесь. Макетирование покажет реальную амплитуду выброса напряжения порожденного индуктивностью рассеяния.
Теперь можем посчитать коэффициент трансформации трансформатора, например таким образом:
Kfb=Uout/Urv (9)
Я называю этот коэффициент трансформации «обратным», т.к. считается он задом наперед. Теперь классический коэффициент трансформации, который можно получить:
K=1/Kfb (10)
Далее посчитаем максимальное напряжение, которое будет приложено к выпрямительному диоду на прямом ходу преобразователя. Думаю вы хорошо понимаете, что оно будет складываться из напряжения на фильтрующем конденсаторе нагрузки, которое в рабочем режиме, можно считать постоянным, и трансформированного, через коэффициент трансформации, напряжения приложенного к первичной обмотке.
UVDmax=Uout+(VACmax×1.41)/K (11)
И не забываем, что выбросы от паразитных индуктивностей обмоток трансформатора, действуют и на диод в т.ч. Если речь идет о источниках с высокими выходными напряжениями, берите запас по напряжению минимум 200В. Для низковольтных, как минимум 1.5, и внимательно смотрите осциллографом на выпрямитель.
Далее.
Lsec=Lpr/K^2 (12)
Из (12) получаем индуктивность вторичной обмотки трансформатора. Правило которое используется в формуле гласит, что «индуктивности обмоток трансформатора соотносятся как квадраты их витков», т.к. выражение можно представить как:
Lsec/Lpr=N2^2/N1^2 (12.1) ( N2^2/N1^2 =K^2)
Далее посчитаем пиковый ток вторичной обмотки. Готовьтесь получить тут достаточно большие цифры, потому, что это «обратноход», и ток у него во «вторичке» — треугольный, и пиковое значение может быть ощутимо больше тока нагрузки.
ILSECpeak=√(1000×2×POUTmax)/(F×ŋ×Lsec) (13)
Данная формула преобразуется точно также как и первая формула для ILPRpeak.
ILSECrms=ILSECpeak√(1-Q)/3 (14)
В (14) вычисляется действующее значение тока через вторичную обмотку трансформатора. Обяснить почему корень из (1-Q)/3 я не могу, вероятно это можно объяснить построив эпюры и прибегнув к геометрии. Тут же прикинем и действующее значение тока первичной обмотки.
ILPRrms=ILPRmax√Q/3 (15)
Итак, индуктивности, токи, частоты посчитали. А как выбрать магнитопровод, спросите вы, как расчитать немагнитный зазор? Для начала мы его «прикинем», основываясь на своем жизненном опыте, а «загнав» его параметры в расчетку, поглядев посчитанную индукцию, можно выбрать другой магнитопровод. Вот захотелось мне источник мощностью 100Вт, с выходным напряжением 12В. Беру я «с потолка» магнитопровод типоразмера PQ2620.
Из его Datasheet выписываю Ae, предполагаемый зазор, и Коэффициент индуктивности для данного зазора (в даташитах Epcos, часто приводится таблица со стандартными зазорами для данного магнитопровода, и значениях Al и эквивалентной проницаемости). Если-же данных о коэфициенте Al для желаемого вами зазора, нет, придется его(зазор) изготовить, намотать пробные 100 витков, и посчитать по простой формуле Al=√(L/N^2), где L- измеренное значение индуктивности на сердечнике с пропиленным вами зазором, N — количество витков, что вы набросали(рекомендую мотать пробных 100 витков).
Объяснять что Такое Ae, G, и Al не буду, предполагая, что вы и сами знаете, зачем нужен зазор в магнитопроводе, и что такое Al. Также в расчетку можно вписать эквивалентную проницаемость сердечника с зазором, но она там не используется, чисто для красоты). В формуле (16) считаем необходимое количество витков.
Npr=√Lpr/Al (16)
Один из самых важных параметров для трансформатора- пиковое значение потока магнитной индукции.
B=(Lpr×ILPRpeak)/(Npr×Ae) (17)
Превышать значение 0,3 я категорически не рекомендую, а 0,4 это уже катастрофа. Так совпало, что данный магнитопровод вроде как вполне подходит под наши нужды. Индукция меньше 0,3Тл, так и хочется его заложить под наши нужды. К сожалению, расчетка не содержит формул для расчета заполненности окна магнитопровода медью, поэтому дать по ней окончательный вердикт — нельзя.
Если же индукция больше 0,3Тл, можем или выбрать более крупный магнитопровод, или увеличить зазор. Увеличив зазор мы получим уже другое значение Al и соотв. значение потока индукции.
Вообще, жизненный опыт показывает, что лучше не лезть в зазоры более 1.5мм., ибо им свойственны свои паразитные явления, такие как выпучивание линий магнитного поля, разогрев витков находящихся вблизи зазора, до температур, при которых им может настать «хана», короче от 0.2мм до 1.5мм. Меньше 0.2- температурное расширение материала может существенно изменить параметры трансформатора. Больше 1.5мм — написал выше.
Выбирая магнитопровод, а именно сравнивая различные модели, только по поперечному сечению керна (Ae), можно упустить из виду то, что длина магнитной линии тоже влияет на Al при том-же сечении, и зазоре.
Например магнитопровод PQ2620 имеет площадь сечения керна 122мм.кв, а ETD34 только 97мм.кв., но длины магнитных линий этих магнитопроводов различны, и через ETD34 можно так-же успешно прокачать 100Вт, как и через PQ2620. Я к тому, что берите и подставляйте в расчетку все феррриты, что находятся вблизи тех размеров, что, как вам кажется, могут прокачать желаемую мощность.
После расчета магнитной индукции в расчетке идет расчет количества витков вторичной обмотки и вспомогательной обмотки, на них специально останавливаться не буду, методология та-же, что и ранее.
Я надеюсь написанное выше будет вам полезно. Разработка ИИП это огромный пласт прикладной науки, и сия «расчетка» лишь маленький листик одного из талмудов, в котором собран весь опыт человечества, но она крайне полезна в прикладном плане, для разработки простеньких «флайбэков».
Моя «расчетка» (а на самом деле не моя, а унаследованная от идейного вдохновителя) довольно примитивный инструмент, поэтому я могу порекомендовать использовать сборник программ Владимира Денисенко, что легко находятся через поисковик. Тех, кто «рубит» в «силовой» теме, и имеет что сказать- вэлкам в коменты. Любая критика приветствуется!
Что непонятно — спрашивайте, я дополню статью более детальными объяснениями.
Автор: