- PVSM.RU - https://www.pvsm.ru -
Продолжение статьи о заземлении, первая часть [1] которой была опубликована на прошлой недели.
В этой части я расскажу о традиционных/ классических способах строительства заземлителей, применяемых примерно с начала двадцатого века.
Г1. Несколько коротких электродов (“уголок и кувалда”)
Г1.1. Особенности решения
Г1.1.1. Промерзание грунта зимой
Г1.1.2. Взаимное “экранирование”/ “затенение” электродовГ1.2. Расчёт получаемого сопротивления заземления и необходимого количества заземляющих электродов
Г1.3. Монтаж
Г1.4. Достоинства и недостатки
Г1.5. Уменьшение количества электродов
Г2. Одиночный глубинный электрод (“обсадная труба”)
Г2.1. Особенность решения
Г2.2. Расчёт получаемого сопротивления заземления
Г2.3. Монтаж
Г2.4. Достоинства и недостатки
Напомню, в прошлой части я остановился на общем подходе.
При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.
В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.
Существует два основных традиционных способа/ решения для строительства заземляющих электродов [2]. Оба базируются на применении вертикальных заземляющих электродов.
При таком подходе в качестве заземляющих электродов применяются небольшие (2-3 метра) стальные уголки/ штыри. Для создания заземлителя они соединяются вместе около поверхности грунта стальной полосой путем приваривания её к этим элементам электро или газосваркой.
Заглубление электродов в грунт производится банальным заколачиванием их кувалдой, которая находится в руках физически сильного и выносливого монтажника. Поэтому такое решение повсеместно применяется под условным названием «уголок и кувалда».
Большая площадь контакта заземлителя [3] с грунтом (вот [4] о чём я) достигается большим количеством электродов (многоэлектродный заземлитель). Увеличивать глубину электродов (альтернативный путь увеличения площади контакта) очень затруднительно, т.к. с увеличением глубины увеличивается сила трения между монтируемым электродом и грунтом, а вес кувалды и силы монтажника имеют предел.
При выборе уголков/ штырей и другого подходящего металлопроката необходимо учитывать их коррозионную стойкость и возможность пропускать через себя токи большой величины в течении какого-то времени без расплавления.
Минимальные разрешенные поперечные размеры (сечения) заземляющих электродов описаны в таблице 1.7.4 ПУЭ, но последние годы чаще применяются поправленные и дополненные величины из таблицы 1 техциркуляра 11 от 2006 года ассоциации «РосЭлектроМонтаж» (источники [5]).
В частности:
При увеличении количества электродов необходимо учитывать некоторые особенности.
Зимой из-за промерзания грунта на глубины, в которых находится половина длины электродов (а это до 2-х метров) сопротивление такого заземлителя увеличивается. Для компенсации этого увеличения (для сохранения удовлетворительного качества заземления) заземлитель выполняется с достаточным “запасом” электродов. Например, для трёхметровых электродов необходимо двухкратное увеличение количества.
Кроме того, увеличением количества электродов необходимо компенсировать само увеличение количества электродов :-) Этот негативный момент т.н. “экранирования”/ “затенения” возникает при использовании множества заземляющих электродов и не позволяет близкорасположенным электродам полноценно “рассеивать” ток в окружающий грунт. Выражается в виде коэффициента использования проводимости заземлителя [6].
Например: десять электродов глубиной по 3 метра, расположенных в линию на расстоянии 3 метра (т.е. на расстояние = своей глубине) друг от друг “работают” на 60% от своей максимальной эффективности.
Десять этих же электродов, расположенных на расстоянии 6 метров (т.е. на расстояние = своей двойной глубине) друг от друга “работают” на 75% от своей максимальной эффективности.
Стопроцентная эффективность достигается отдалением электродов на расстояния около 30 метров (10 их глубин), что на практике никогда не используется в угоду стремления к адекватной компактности и стоимости монтажа заземляющего устройства.
Опишу расчёты на примере десяти наиболее часто используемых для такого способа трёхметровых электродов в виде стального равнополочного уголка с шириной полки 50 мм, монтируемых на расстоянии 3-х метров друг от друга в канаве глубиной 0,5 метров (в п. Г1.3. [7] объяснение “почему так”). Грунт, в котором будут монтироваться эти электроды, будет суглинком, обычным для России, с удельным электрическим сопротивлением [8] 100 Ом*м.
Расчёты не сложны и проводятся в 3 этапа.
Получаемое сопротивление заземления
1 этап. Для начала необходимо вычислить сопротивление заземления одного заземляющего электрода.
Сопротивление заземления одиночного вертикального заземляющего электрода вычисляется по формуле:
R1 составит 27,8 Ом
(при p = 100 Ом*м, L = 3 м, d = 0.05 м (50 мм; для плоских электродов под диаметром понимается их ширина), T = 2 м (T — расстояние от верхнего уровня грунта до середины заглубленного электрода)).
2 этап. Общее сопротивление нескольких электродов в идеальных условиях будет меньше сопротивления заземления одного электрода во столько раз, сколько будет электродов.
Для десяти электродов общее сопротивление будет меньше в 10 раз и составит 2,78 Ом.
3 этап. “Компенсации”.
Сезонный коэффициент (увеличения сопротивления заземления в замерзшем зимой грунте) для таких электродов будет равен 2 (откуда [9] это).
Коэффициент использования проводимости электродов будет равен 0.6, т.к. расстояние между электродами будет 3 метра (т.е. равное глубине электрода), а их количество — 10 штук (откуда [10] это).
Оба коэффициента увеличивают сопротивление заземления.
Итоговое общее сопротивление заземления вышеприведенных 10-ти электродов будет равно 5,56 Ом летом и 9,27 Ом зимой.
Необходимое количество заземляющих электродов
Представим, что наша задача — заземлить телекоммуникационное оборудование и для этого необходимо получить заземление с сопротивлением не более 4 Ом.
1 этап. Всё повторяется. Вычисляем сопротивление заземления одного/ одиночного заземляющего электрода.
R1 составит 27,8 Ом.
2 этап. Количество электродов в идеальных условиях напрямую зависит от необходимого сопротивления заземления с округление в большую сторону (“потолок”).
Для достижения 4-х Ом количество электродов получится 7 штук (округление 6,95).
3 этап. “Компенсации”.
Сезонный коэффициент (увеличения сопротивления заземления в замерзшем зимой грунте) для таких электродов будет равен 2.
Коэффициент использования проводимости электродов будет зависеть от рассчитываемого количества электродов — заранее его не выбрать. Однако можно прикинуть наихудший вариант и, допустив, что электродов будет больше 20, взять для расчёта величину 0,5.
Оба коэффициента увеличивают необходимое количество заземляющих электродов.
Итоговое необходимое количество вышеприведенных заземляющих электродов будет равно 28 штук (округление 27,8). Совпадение с сопротивлением заземления одного электрода случайно.
Монтаж описанного выше многоэлектродного заземлителя выглядит примерно так.
Углубление на 0,5-0,7 метра (канава) необходимо для механической и погодной изоляции проводника (полосы) и верхушек электродов. Например, чтобы не повредить их во время копки грунта для цветника и чтобы сталь меньше намокала во время дождя (это позволяет уменьшить её коррозию, а значит увеличить срок службы).
Взаимное расстояние между электродами не менее 3-х метров является некоторый мерой противодействия эффекту “экранирования”/ “затенения” электродов друг от друга.
Использование сварки для соединения элементов из чёрной стали — настоятельно рекомендовано ПУЭ (п. 1.7.139).
Используемые материалы:
Используемый инструмент:
Используемые ресурсы:
Достоинства:
Иногда совместно с этим решением применяется метод кардинального снижения удельного электрического сопротивления грунта, который позволяет сократить количество заземляющих электродов в 2-3 раза при сохранении получаемого сопротивления заземления. Иными словами — этот метод позволяет существенно снизить сопротивление заземления.
Речь идёт о засолении грунта в месте размещения электродов путем добавления в него большого объема поваренной соли NaCl (в среднем — 5 килограмм на метр длины канавы, в которую ведется монтаж). При её растворении в грунте (выщелачивании (wiki [11])) резко повышается концентрация ионов, участвующих в переносе заряда, а следовательно снижается его (грунта) электрическое сопротивление.
При неоспоримом положительном достоинстве такого метода, а также при его простоте и дешевизне — он имеет два огромных недостатка, которые грозят восстановлением заземлителя практически “с нуля”:
Г2.1. Особенности решения
Г2.2. Расчёт получаемого сопротивления заземления
Г2.3. Монтаж
Г2.4. Достоинства и недостатки
При таком подходе заземлителем [3] является глубокий электрод (чаще всего одиночный) в виде стальной трубы, размещенной в пробуриваемом в грунте отверстии. Бурение и размещение в отверстии трубы выполняется специальной машиной — буровой установкой (обычно на базе грузового автомобиля).
Большая площадь контакта заземлителя с грунтом (вот [4] о чём я) достигается большой длиной (вернее, глубиной) электрода. Кроме того, за счет достижения глубинных слоев грунта, в большинстве случаев имеющих меньшее удельное электрические сопротивление, такой способ имеет бОльшую эффективность (меньшее сопротивление заземления), чем первый — при одинаковой суммарной длине электродов.
При увеличении глубины электрода необходимо учитывать, что в однородном грунте сопротивление заземления снижается не пропорционально этому увеличению (больше глубина -> меньше уменьшение сопротивления).
Поэтому при отсутствии на глубине слоев грунта с более низким удельным электрическим сопротивлением стоит рассмотреть вопрос увеличения количества электродов, а не увеличения глубины одиночного электрода. На решение этого вопроса будут влиять и стоимость монтажа дополнительных электродов, и доступность площади для их размещения.
Но напомню (оригинал [12]): … на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности.
Опишу расчёты на примере одиночного тридцатиметрового электрода в виде стальной трубы диаметром 100 мм, смонтированной в канаве глубиной 0,5 метров. Грунт, в котором будет монтироваться этот электрод, будет для упрощения расчёта однородным суглинком, обычным для России, с удельным электрическим сопротивлением [8] 100 Ом*м.
Расчёт проводится в 1 этап.
Сопротивление заземления одиночного вертикального заземляющего электрода вычисляется по формуле:
R1 составит 3,7 Ом
(при p = 100 Ом*м, L = 30 м, d = 0.1 м (100 мм), T = 15.5 м (T — расстояние от верхнего уровня грунта до середины заглубленного электрода)).
Сравните с результатом в п. Г1.2 [13]. Даже при условии однородного грунта одиночный глубинный заземлитель оказывается много эффективнее, чем многоэлектродный, что скажется на огромной разнице в занимаемой этим заземлителем площадки на поверхности.
Но в этой “эйфории” не стоит забывать про стоимость буровых работ, о чём я упомяну ниже в п. Г2.4. (“Недостатки [14]”).
На практике монтаж такого заземлителя в чём-то проще монтажа многоэлектродного заземлителя из первого решения (Г1 [15]).
Используемые материалы:
Используемый инструмент:
Используемые ресурсы:
Достоинства:
Традиция — это прогресс в минувшем; в будущем прогресс станет традицией (Эдуар Эррио)
В конце двадцатого века было разработано решение, которое обладает достоинствами обоих описанных выше способов, не имея присущих им недостатков.
Кроме того, сильное влияние засоления грунта на снижение сопротивления заземления (п. Г1.5. [19]) настолько привлекло внимание инженеров, что было найдено “лекарство” от недостатков этого метода — вымывания соли из грунта и коррозии электродов. Оно породило очень интересный способ строительства заземлителя, применимый там, где пасуют простые металлические электроды — в вечномёрзлых, а также каменистых грунтах.
О них я расскажу в следующей, заключительной, части.
Примерный дата выхода — до 5.06.
При подготовке данной статьи использовались следующие материалы:
Автор: arozhankov
Сайт-источник PVSM.RU: https://www.pvsm.ru
Путь до страницы источника: https://www.pvsm.ru/e-nergiya-i-e-lementy-pitaniya/8464
Ссылки в тексте:
[1] первая часть: http://habrahabr.ru/post/144464/
[2] заземляющих электродов: http://habrahabr.ru/post/144464/#elektrod
[3] заземлителя: http://habrahabr.ru/post/144464/#zazemlitel
[4] вот: http://habrahabr.ru/post/144464/#v1
[5] источники: #literatura2
[6] коэффициента использования проводимости заземлителя: http://www.zandz.ru/koefficient_ispolzovaniya.html
[7] Г1.3.: #g13k
[8] удельным электрическим сопротивлением: http://habrahabr.ru/post/144464/#soprotivlenie_grunta
[9] откуда: #g111
[10] откуда: #g112
[11] wiki: http://ru.wikipedia.org/wiki/%D0%92%D1%8B%D1%89%D0%B5%D0%BB%D0%B0%D1%87%D0%B8%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5
[12] оригинал: http://habrahabr.ru/post/144464/#v121
[13] Г1.2: #g12
[14] Недостатки: #g24n
[15] Г1: #g1
[16] Г1.3.: #g131
[17] Г2.2.: #g22
[18] как и у первого способа: #g14n
[19] Г1.5.: #g15
[20] гуглить: https://www.google.ru/search?ie=UTF-8&q=%D0%9F%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D0%B0+%D0%A3%D1%81%D1%82%D1%80%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%B0+%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D1%83%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BE%D0%BA+(%D0%9F%D0%A3%D0%AD)%2C+%D1%87%D0%B0%D1%81%D1%82%D1%8C+1.7+%D0%B2+%D1%80%D0%B5%D0%B4%D0%B0%D0%BA%D1%86%D0%B8%D0%B8+%D1%81%D0%B5%D0%B4%D1%8C%D0%BC%D0%BE%D0%B3%D0%BE+%D0%B8%D0%B7%D0%B4%D0%B0%D0%BD%D0%B8%D1%8F
[21] гуглить: https://www.google.ru/search?ie=UTF-8&q=%D0%A2%D0%B5%D1%85%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9+%D1%86%D0%B8%D1%80%D0%BA%D1%83%D0%BB%D1%8F%D1%80+11%2F2006+%D0%B0%D1%81%D1%81%D0%BE%D1%86%D0%B8%D0%B0%D1%86%D0%B8%D0%B8+%D0%A0%D0%BE%D1%81%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%BE%D0%BD%D1%82%D0%B0%D0%B6
[22] Заземление на ZANDZ.ru: http://www.zandz.ru/
Нажмите здесь для печати.